Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 047702    DOI: 10.1088/0256-307X/30/4/047702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Direct Piezoelectric Potential Measurement of ZnO Nanowires Using a Kelvin Probe Force Microscope
WANG Xian-Ying**, XIE Shu-Fan, CHEN Xiao-Dong, LIU Yang-Yang
School of Materials Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093
Cite this article:   
WANG Xian-Ying, XIE Shu-Fan, CHEN Xiao-Dong et al  2013 Chin. Phys. Lett. 30 047702
Download: PDF(921KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Precise measurements of the piezoelectric signals are essential for tailoring the properties of ZnO nanowire (NW) based energy conversion devices. We characterize three-dimensional piezoelectric potential profiles of NW arrays using a kelvin probe force microscope (KPFM). A specific device composed of vertically aligned ZnO NWs and thermal responsive polymers is designed for the KPFM test to eliminate surface roughness influence and to avoid mechanical vibrations. The KPFM images show increasing contrasts between the NW and polymer area with the rising temperature, revealing the accumulation of piezoelectric charges. The piezoelectric signals measured by KPFM are around 10 times larger than those measured using external electric circuits.
Received: 30 December 2012      Published: 28 April 2013
PACS:  77.65.-j (Piezoelectricity and electromechanical effects)  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  07.79.-v (Scanning probe microscopes and components)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/047702       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/047702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xian-Ying
XIE Shu-Fan
CHEN Xiao-Dong
LIU Yang-Yang
[1] Wang Z L and Song J H 2006 Science 312 242
[2] Zhang L, Yang J H, Wang X Y, He X, Zhao B, Tang Z H and Qiu H X 2011 Chin. Phys. Lett. 28 016501
[3] Chang C E, Tran V H, Wang J B, Fuh Y K and Lin L W 2010 Nano Lett. 10 726
[4] Lieber C M and Wang Z L 2007 MRS Bull. 32 99
[5] Chen X, Xu S Y, Yao N and Shi Y 2010 Nano Lett. 10 2133
[6] Qi Y, Jafferis N T, Lyons K J, Lee C M, Ahmad H and McAlpine M C 2010 Nano Lett. 10 524
[7] Beyerl D J and Wang X D 2012 Adv. Funct. Mater. 22 652
[8] Huang M H, Wu Y Y, Feick H, Tran N, Weber E and Yang P D 2001 Adv. Mater. 13 113
[9] Zhao M H, Wang Z L and Mao S X 2004 Nano Lett. 4 587
Related articles from Frontiers Journals
[1] Chen-Fei Jin, Si-Qi Zhang, Zhi-Qiang Shen, Wei-Li Li. Roles of Nano-Domain Switching and Non-180$^{\circ}$ Domains in Enhancing Local Piezoelectric Responses of Highly (100)-Oriented Pb(Zr$_{0.60}$Ti$_{0.40}$)O$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2019, 36(10): 047702
[2] Qiang-zhong Wang, Gang Wang, Fa-xin Li. Precise, Long-Time Displacement Self-Sensing of Piezoelectric Cantilever Actuators Based on Charge Measurement Using the Sawyer–Tower Circuit[J]. Chin. Phys. Lett., 2018, 35(10): 047702
[3] Zheng-Hua Tang, Zheng-Sheng Jiang, Chun-Zhi Jiang, Da-Jun Lei, Jian-Quan Huang, Feng Qiu, Hai-Ming Deng, Min Yao, Xiao-Yi Huang. Field Tunable Polaritonic Band Gaps in Fibonacci Piezoelectric Superlattices[J]. Chin. Phys. Lett., 2018, 35(7): 047702
[4] Ze-Qun Fang, Zhi-Lin Hou. Tunable Band Gap in Piezoelectric Composite Rod Based on the Inter-Coupling Effect[J]. Chin. Phys. Lett., 2018, 35(5): 047702
[5] Hao He, Jiang-Tao Zhao, Zhen-Lin Luo, Yuan-Jun Yang, Han Xu, Bin Hong, Liang-Xin Wang, Rui-Xue Wang, Chen Gao. The Electric-Field Controllable Non-Volatile 35$^{\circ}$ Rotation of Magnetic Easy Axis in Magnetoelectric CoFeB/(001)-Cut Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-25%PbTiO$_{3}$ Heterostructure[J]. Chin. Phys. Lett., 2016, 33(06): 047702
[6] Zhen-Ye Zhu, Si-Qi Wang, Yan-Ming Fu. First-Principles Study of Properties of Strained PbTiO$_{3}$/KTaO$_{3}$ Superlattice[J]. Chin. Phys. Lett., 2016, 33(02): 047702
[7] LIU Yang, HUANG Xu-Dong, FENG Yu-Jun, HE Hong-Liang. Controlling Factors of the Electric Field at the Triple Junction[J]. Chin. Phys. Lett., 2014, 31(2): 047702
[8] WANG Yin, ZHOU Jin-Xiong, WU Xiao-Hong, LI Bo, ZHANG Ling. Energy Diagrams of Dielectric Elastomer Generators under Different Types of Deformation[J]. Chin. Phys. Lett., 2013, 30(6): 047702
[9] XU Yan-Long, CHEN Chang-Qing, TIAN Xiao-Geng. The Existence of Simultaneous Bragg and Locally Resonant Band Gaps in Composite Phononic Crystal[J]. Chin. Phys. Lett., 2013, 30(4): 047702
[10] WU Shao-Hua, ZHAO Zhan, ZHAO Jun-Juan, GUO Li-Jun, DU Li-Dong, FANG Zhen, KONG De-Yi, XIAO Li, GAO Zhong-Hua. Ultrasonic Energy Transference Based on an MEMS ZnO Film Array[J]. Chin. Phys. Lett., 2012, 29(12): 047702
[11] TANG Zheng-Hua, ZHANG Wei-Yi. A Field Tunable Multichannel Microwave Delay-Line Using a Piezoelectric-Piezomagnetic Superlattice[J]. Chin. Phys. Lett., 2012, 29(11): 047702
[12] LI Xiu-Ming, ZHANG Rui, HUANG Nai-Xing, LÜ, Tian-Quan, CAO Wen-Wu. Surface Acoustic Wave Propagation in Relaxor-Based Ferroelectric Single Crystals 0.93Pb(Zn1/3Nb2/3)O3−0.07PbTiO3 Poled along [011]c[J]. Chin. Phys. Lett., 2012, 29(2): 047702
[13] ZHOU Yun**, CHEN Miao-Gen, FENG Zhen-Jie, WANG Xin-Yan, CUI Yu-Jian, ZHANG Jin-Cang . High Magnetoelectric Coupling in Nano–Microscale Particulate Composites at Low Frequency[J]. Chin. Phys. Lett., 2011, 28(10): 047702
[14] DUAN Yi-Feng**, QIN Li-Xia, SHI Li-Wei, TANG Gang . Pressure-Induced Anomalous Phase Transitions and Colossal Enhancements of Piezoelectricity in Ground-State BaTiO3[J]. Chin. Phys. Lett., 2011, 28(4): 047702
[15] NI Heng-Kan, ZOU Qiang**, FU Xing, WU Sen, WANG Hui, XUE Tao . Production of ZnO Nanobelts and Meso-Scale Study of Mechanical Properties[J]. Chin. Phys. Lett., 2010, 27(11): 047702
Viewed
Full text


Abstract