Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 047701    DOI: 10.1088/0256-307X/30/4/047701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Metal Oxide Heterostructure for Resistive Random Access Memory Devices
LIAO Zhao-Liang1, CHEN Dong-Min2
1Department of Physics and Astronomy, Louisianan State University, Baton Rouge, LA 70810, USA
2Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871
Cite this article:   
LIAO Zhao-Liang, CHEN Dong-Min 2013 Chin. Phys. Lett. 30 047701
Download: PDF(739KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose and investigate a metal oxide heterostructure (MOH) based resistive switching (RS) device. The driving mechanism of resistive switching (RS) in an MOH is more directly related to oxygen ion/vacancy migration around their interface. The performance of an MOH-based RS device depends on the oxygen mobility, oxygen vacancy concentration as well as its relation to the resistivity. An enhanced ratio of high resistance state to low resistance state can be achieved if the two involved metal oxides are mutually complemental metal oxides in which one of them has larger resistivity with increasing concentration of vacancy while the other one is the reverse.
Received: 04 October 2012      Published: 28 April 2013
PACS:  77.80.Fm (Switching phenomena)  
  77.55.+f  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/047701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/047701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIAO Zhao-Liang
CHEN Dong-Min
[1] Moore G E 1965 Electronics 38 114
[2] Neale R G, Nelson D L and Moore G E 1970 Electronics 43 56
[3] Babich M N, Broto J M, Fert A, Dau F N V, Petroff F, Eitenne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
[4] Zhuang W W, Pan W, Ulrich B D, Lee J J, Stecher L, Burmaster A, Evans D R, Hsu S T, Tajiri M, Shimaoka A, Inoue K, Naka T, Awaya N, Sakiyama K, Wang Y, Liu S Q, Wu N J and Ignatiev A 2002 IEDM 2002 International Electron Devices Meeting (Sharp Labs. of America, Camas, WA, USA, 8–11 December 2002) p 193
[5] Baek G, Lee M S, Seo S, Lee M J, Seo D H, Suh D S, Park J C, Park S O, Kim H S, Yoo I K, Chung U I and Moon I T 2004 Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International p 587
[6] Waser R and Aono M 2007 Nat. Mater. 6 833
[7] Sawa A 2008 Mater. Today 11 28
[8] Waser R 2009 Microelectron. Eng. 86 1925
[9] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[10] Akinaga H and Shima H 2010 Proc. IEEE 98 2237
[11] Liao Z L, Wang Z Z, Meng Y, Liu Z Y, Gao P, Gang J L, Zhao H W, Liang X J, Bai X D and Chen D M 2009 Appl. Phys. Lett. 94 253503
[12] Liao Z L, Gao P, Meng Y, Zhao H W, Bai X D, Zhang J D and Chen D M 2011 Appl. Phys. Lett. 99 113506
[13] Cohen R E and Krakauer H 1990 Phys. Rev. B 42 6416
[14] Robinson L 1987 Science 236 1063
[15] Zawadowski A 1989 Solid State Commun. 70 439
[16] Zener C 1951 Phys. Rev. 81 440
[17] Xing P F, Chen Y X, Yan S S, Liu G L, Mei L M and Zhang Z 2009 J. Appl. Phys. 106 043909
[18] Kitanaka Y, Noguchih Y and Miyayama M 2010 Phys. Rev. B 81 094114
[19] Sun J R, Yeung H W, Li H, Zhao K, Chan H N and Wong H K 2001 J. Appl. Phys. 90 2831
[20] Jourdan M, Blümer N and Adrian H 2003 Eur. Phys. J. B 33 25
[21] Lee D K and Yoo H I 2006 Solid State Ionics 177 1
[22] Jeong D S, Schroeder H and Waser R 2009 Phys. Rev. B 79 195317
[23] Jiang W, Noman M, Lu Y M, Bain J A, Salvador P A and Skowronski M 2011 J. Appl. Phys. 110 034509
[24] Meyer R, Schloss L, Brewer J, Lambertson R, Kinney W, Sanchez J and Rierson D 2008 Proc. Non-Volatile Memory Technol. Symposium (IEEE 2008) p 1
[25] Liao Z L, Gao P, Meng Y, Fu W Y, Bai X D, Zhao H W and Chen D M 2012 Solid-State Electron. 72 4
[26] Ramprasad R 2003 J. Appl. Phys. 94 5609
[27] Skorodumova N V, Simak S L, Lundqvist B I, Abrikosov I A and Johansson B 2002 Phys. Rev. Lett. 89 166601
[28] Xu Z T, Jin K J, Wang C, Lu H B, Wang C, Wang L and Yang G Z 2011 Appl. Phys. A 105 149
[29] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[30] Salamon M B and M Jaime 2001 Rev. Mod. Phys. 73 583
[31] Liao Z L, Gao P, Bai X D, Chen D M and Zhang J D 2012 J. Appl. Phys. 111 114506
[32] Gao P, Wang Z Z, Fu W Y, Liao Z L, Liu K H, Wang W L, Bai X D and Wang E G 2010 Micron 41 301
Related articles from Frontiers Journals
[1] Wei Zhang , Chao Wang , Jian-Wei Lian , Jun Jiang, and An-Quan Jiang. Erasable Ferroelectric Domain Wall Diodes[J]. Chin. Phys. Lett., 2021, 38(1): 047701
[2] Qiang-zhong Wang, Gang Wang, Fa-xin Li. Precise, Long-Time Displacement Self-Sensing of Piezoelectric Cantilever Actuators Based on Charge Measurement Using the Sawyer–Tower Circuit[J]. Chin. Phys. Lett., 2018, 35(10): 047701
[3] Jun Jiang, An-Quan Jiang. Nanosecond Characterization of Regional Domain Imprint from Fast Domain Switching Currents in Pb(Zr,Ti)O$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2016, 33(02): 047701
[4] LIU Xiao-Bing, MENG Jian-Wei, JIANG An-Quan**, WANG Jian-Lu . Thickening of Non-Ferroelectric Capacitive Layers with Enhanced Domain Switching Speed in Polyvinylidence Fluoride Copolymer Thin Films[J]. Chin. Phys. Lett., 2011, 28(10): 047701
[5] LIU Li-Ming, ZENG Hua-Rong**, CAO Zhen-Zhu, LENG Xue, ZHAO Kun-Yu, LI Guo-Rong, YIN Qing-Rui . Piezoresponse Force Microscopy Imaging of Ferroelectric Domains in Bi(Zn1/2Ti1/2)O3−Pb(Mg1/3Nb2/3)O3−PbTiO3 Piezoelectric Ceramics[J]. Chin. Phys. Lett., 2011, 28(8): 047701
[6] ZHANG Hong-Jian, ZHANG Xiao-Ping, ZHAO Yong-Gang. Bipolar Resistance Switching Characteristics of ZnO/Nb-Doped SrTiO3 Heterojunctions[J]. Chin. Phys. Lett., 2009, 26(7): 047701
[7] JIANG An-Quan, TANG Ting-Ao. Correlation between Imprint and Long-Time Polarization Reversal under Low Fields in Ferroelectric Thin Films[J]. Chin. Phys. Lett., 2009, 26(1): 047701
[8] LIU Hong-De, KONG Yong-Fa, HU Qian, WU Ri-Wen, WANG Wen-Jie, LI Xiao-Chun, CHEN Shao-Lin, LIU Shi-Guo, XU Jing-Jun. Light-Induced Domain Inversion in Mg-Doped near Stoichiometric Lithium Niobate Crystals[J]. Chin. Phys. Lett., 2007, 24(6): 047701
[9] LI Bao-Shan, LI Guo-Rong, ZHAO Su-Chuan, ZHU Zhi-Gang, DING Ai-Li. Reorientation of Defect Dipoles in Ferroelectric Ceramics[J]. Chin. Phys. Lett., 2005, 22(5): 047701
[10] LI Fa-Xin, FANG Dai-Ning, FENG Xue. Effect of Lateral Pressure On The Non-Linear Behavior of PZT Ceramics[J]. Chin. Phys. Lett., 2003, 20(12): 047701
Viewed
Full text


Abstract