Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 047503    DOI: 10.1088/0256-307X/30/4/047503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Dzyaloshinskii–Moriya Interaction in Spin 1/2 Antiferromagnetic Rings with Nearest Next Neighbor Coupling
LI Peng-Fei**, CAO Hai-Jing, ZHENG Li
Department of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090
Cite this article:   
LI Peng-Fei, CAO Hai-Jing, ZHENG Li 2013 Chin. Phys. Lett. 30 047503
Download: PDF(550KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We numerically investigate the magnetoelastic (ME) instability in spin 1/2 antiferromagnetic rings with nearest-next neighbor (NNN) coupling J2 and Dzyaloshinskii–Moriya (DM) interaction Dz. It is found that, for a given Dz, there exists a critical J2c . As J2=J2c , the ME instability is irrelative to the DM interaction and NNN coupling. These results may come from the competition between the DM interaction and NNN coupling. The DM interaction does not affect the critical behavior at the point of J2=0.5, at which the systems always locate in the dimerized state.
Received: 26 November 2012      Published: 28 April 2013
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.10.Pq (Spin chain models)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/047503       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/047503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Peng-Fei
CAO Hai-Jing
ZHENG Li
[1] Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R and Barbara B 1996 Nature 383 145
[2] Friedman J R, Sarachik M P, Tejada J and Ziolo R 1996 Phys. Rev. Lett. 76 3830
[3] Wernsdorfer W and Sessoli R 1999 Science 284 133
[4] He G, He L H, Zhang J R, Cao H B, Yan L Q, Wang F W and Yan Q W 2007 Chin. Phys. B 16 1776
Li Y R, Liu H Q, Liu Y, Su S K and Wang Y P 2009 Chin. Phys. Lett. 26 077504
[5] Waldmann O, Dobe C, Ochsenbein S T, Güdel H U and Sheikin I 2006 Phys. Rev. Lett. 96 027206
[6] Lante V, Rousochatzakis I, Penc K, Waldmann O and Mila F 2009 Phys. Rev. B 79 180412
[7] Cavallini M, Gomez-Segura J, Albonetti C, Ruiz-Molina D, Veciana J and Biscarini F 2006 J. Phys. Chem. B 110 11607
[8] Lascialfari A, Jang Z H, Borsa F, Gatteschi D, Cornia A, Rovai D, Caneschi A and Carretta P 2000 Phys. Rev. B 61 6839
[9] Spanu L and Parola A 2004 Phys. Rev. Lett. 92 197202
[10] Xue H B, Nie Y H, Li Z J and Liang J Q 2011 Phys. Lett. A 375 716
[11] Nossa J F, Islam M F, Canali C M and Pederson M R 2012 Phys. Rev. B 85 085427
[12] Tsukerblat B, Tarantul A and Müller A 2006 Phys. Lett. A 353 48
[13] Cross M C and Fisher D S 1979 Phys. Rev. B 19 402
Aizenman M and Nachtergaele B 1994 Commun. Math. Phys. 164 17
[14] Guo D, Kennedy T and Mazumdar S 1990 Phys. Rev. B 41 9592
[15] Dender D C, Davidovic D, Reich D H, Broholm C, Lefmann K and Aeppli G 1996 Phys. Rev. B 53 2583
[16] Kohgi M, Iwasa K, Mignot J M, Fak B, Gegenwart P, Lang M, Ochiai A, Aoki H and Suzuki T 2001 Phys. Rev. Lett. 86 2439
[17] Tsukada I, Takeya J T, Masuda T and Uchinokura K 2001 Phys. Rev. Lett. 87 127203
[18] Grande B and Müller-Buschbaum H 1975 Z. Anorg. Allg. Chem. 417 68
[19] Greven M, Birgeneau R J, Endoh Y, Kastner M A, Matsuda M and Shirane G 1995 Z. Phys. B 96 465
[20] Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241
[21] Moriya T 1960 Phys. Rev. 120 91
[22] Cinti F, Affronte M and Jansen A G M 2002 Eur. Phys. J. B 30 461
[23] Konstantinidis N P and Coffey D 2002 Phys. Rev. B 66 174426
[24] Isobe M and Ueda Y 1996 J. Phys. Soc. Jpn. 65 3142
Fujiwara N, Yasuoka H, Isobe M, Ueda Y and Maegawa S 1997 Phys. Rev. B 55 R11945
[25] Rieraand J and Dobry A 1995 Phys. Rev. B 51 16098
Castilla G, Chakravarty S and Emery V J 1995 Phys. Rev. Lett. 75 1823
[26] Valentí R, Saha-Dasgupta T, Alvarez J V Po?gaj?i? K and Gros C 2001 Phys. Rev. Lett. 86 5381
[27] Kuboki K and Fukuyama H 1987 J. Phys. Soc. Jpn. 56 3126
Tonegawa T and Harada I 1987 J. Phys. Soc. Jpn. 56 2153
[28] Oshikawa M and Affleck I 1997 Phys. Rev. Lett. 79 2883
[29] Lante V, Rousochatzakis I, Penc K, Waldmann O and Mila F 2009 Phys. Rev. B 79 180412
[30] Majumdar C K and Ghosh D K 1969 J. Math. Phys. 10 1399
[31] Li P F and Chen Y G 2009 Commun. Theor. Phys. 52 1125
Related articles from Frontiers Journals
[1] Zhi-Xuan Li, Shuai Yin, and Yu-Rong Shu. Imaginary-Time Quantum Relaxation Critical Dynamics with Semi-Ordered Initial States[J]. Chin. Phys. Lett., 2023, 40(3): 047503
[2] Kai-Yue Zeng, Fang-Yuan Song, Lang-Sheng Ling, Wei Tong, Shi-Liang Li, Zhao-Ming Tian, Long Ma, and Li Pi. Incommensurate Magnetic Order in Sm$_3$BWO$_9$ with Distorted Kagome Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 047503
[3] Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 047503
[4] Ling Wang, Yalei Zhang, and Anders W. Sandvik. Quantum Spin Liquid Phase in the Shastry–Sutherland Model Detected by an Improved Level Spectroscopic Method[J]. Chin. Phys. Lett., 2022, 39(7): 047503
[5] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 047503
[6] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 047503
[7] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 047503
[8] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 047503
[9] Ren-Gui Zhu. Classical Ground State Spin Ordering of the Antiferromagnetic $J_1$–$J_2$ Model[J]. Chin. Phys. Lett., 2019, 36(6): 047503
[10] Erhan Albayrak. The Mixed Spin-1/2 and Spin-1 Ising–Heisenberg Model in the Mean-Field Approximation: a New Approach[J]. Chin. Phys. Lett., 2018, 35(3): 047503
[11] Zhong-Chao Wei, Hai-Jun Liao, Jing Chen, Hai-Dong Xie, Zhi-Yuan Liu, Zhi-Yuan Xie, Wei Li, B. Normand, Tao Xiang. Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet[J]. Chin. Phys. Lett., 2016, 33(07): 047503
[12] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 047503
[13] DAI Jia, WANG Peng-Shuai, SUN Shan-Shan, PANG Fei, ZHANG Jin-Shan, DONG Xiao-Li, YUE Gen, JIN Kui, CONG Jun-Zhuang, Sun Yang, YU Wei-Qiang. Nuclear-Magnetic-Resonance Properties of the Staircase Kagomé Antiferromagnet $PbCu_3TeO_7$[J]. Chin. Phys. Lett., 2015, 32(12): 047503
[14] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 047503
[15] LI Da-Chuang, LI Xiao-Man, LI Hu, TAO Rui, YANG Ming, CAO Zhuo-Liang. Thermal Entanglement in the Pure Dzyaloshinskii–Moriya Model with Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(5): 047503
Viewed
Full text


Abstract