Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 047202    DOI: 10.1088/0256-307X/30/4/047202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Graphene Quantum Wells and Superlattices Driven by Periodic Linear Potential
YAN Wei-Xian**
College of Physics and Electronics, Shanxi University, Taiyuan 030006
Cite this article:   
YAN Wei-Xian 2013 Chin. Phys. Lett. 30 047202
Download: PDF(660KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The transfer matrices for both nonsingular and singular cases are constructed to ensure efficient and accurate numerical computation on the electronic and transport properties of graphene quantum wells and superlattices driven by periodic linear potential. An intuitive interpretation is given for the evolution behavior of the current flowing through the multiple graphene quantum wells/barriers by analyzing the interrelationship among the transmission, bias voltage, incident velocity, and linear potential ranges. The energy minibands and density of states of the graphene superlattices with different periods are also examined by using analytical and numerical methods, showing that the period of superlattices plays a crucial role in energy bands and density of states.
Received: 10 January 2013      Published: 28 April 2013
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.22.Pr (Electronic structure of graphene)  
  81.05.ue (Graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/047202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/047202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Wei-Xian
[1] DiVincenzo D P and Mele E J 1984 Phys. Rev. B 29 1685
[2] Katnelson M I 2007 Mater. Today 10 20
[3] Neto A H C et al 2009 Rev. Mod. Phys. 81 109
[4] Abergel D S L et al 2010 Adv. Phys. 59 261
[5] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[6] Young A F and Kim P 2009 Nat. Phys. 5 222
[7] Rusin T M and Zawadzki W 2008 Phys. Rev. B 78 125419
[8] Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801
[9] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
[10] Bai C and Yang Y 2010 Phys. Lett. A 374 882
[11] Barbier M et al 2008 Phys. Rev. B 77 115446
[12] Nguyen H C and Nguyen V L 2009 J. Phys.: Condens. Matter 21 045305
[13] Barbier M et al 2009 Phys. Rev. B 79 155402
[14] Xu G J et al 2010 J. Appl. Phys. 107 123718
[15] Soodchomshom B 2012 Physica E 44 1617
[16] Zhang H Y et al 2012 Chin. Phys. Lett. 29 128401
[17] Hu S J et al 2012 Chin. Phys. Lett. 29 057201
[18] Arovas D P et al 2010 New J. Phys. 12 123020
[19] Hartmann R R, Robinson N J and Portnoi M E 2010 Phys. Rev. B 81 245431
[20] Sun L and Guo Y 2011 J. Appl. Phys. 109 123719
[21] Yampol'skii V A, Savel'ev S and Nori F 2008 New J. Phys. 10 053024
[22] Huo Q H, Wang R Z and Yan H 2012 Chin. Phys. Lett. 29 077307
Related articles from Frontiers Journals
[1] Lijun Zhu, Lin Li, Xiaodong Fan, Zhongniu Xie, and Changgan Zeng. Effect of Boundary Scattering on Magneto-Transport Performance in BN-Encapsulated Graphene[J]. Chin. Phys. Lett., 2022, 39(9): 047202
[2] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 047202
[3] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 047202
[4] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 047202
[5] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 047202
[6] Jian-Ying Chen, Lu Liu, Chun-Xia Li, Jing-Ping Xu. Chemical Vapor Deposition Growth of Large-Area Monolayer MoS$_{2}$ and Fabrication of Relevant Back-Gated Transistor[J]. Chin. Phys. Lett., 2019, 36(3): 047202
[7] Yu-Bing Wang, Wei-Hong Yin, Qin Han, Xiao-Hong Yang, Han Ye, Shuai Wang, Qian-Qian Lv, Dong-Dong Yin. The Nonlinear Electronic Transport in Multilayer Graphene on Silicon-on-Insulator Substrates[J]. Chin. Phys. Lett., 2017, 34(6): 047202
[8] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 047202
[9] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 047202
[10] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 047202
[11] Sedighe Salimian, Mohammad Esmaeil Azim Araghi. Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor[J]. Chin. Phys. Lett., 2016, 33(01): 047202
[12] HE Ze-Zhao, YANG Ke-Wu, YU Cui, LI Jia, LIU Qing-Bin, LU Wei-Li, FENG Zhi-Hong, CAI Shu-Jun. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2015, 32(11): 047202
[13] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 047202
[14] YI Ming-Dong, GUO Jia-Lin, HU Bo, XIA Xian-Hai, FAN Qu-Li, XIE Ling-Hai, HUANG Wei. Memory Behaviors Based on ITO/Graphene Oxide/Al Structure[J]. Chin. Phys. Lett., 2015, 32(07): 047202
[15] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 047202
Viewed
Full text


Abstract