Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 044301    DOI: 10.1088/0256-307X/30/4/044301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
The Existence of Simultaneous Bragg and Locally Resonant Band Gaps in Composite Phononic Crystal
XU Yan-Long1, CHEN Chang-Qing2, TIAN Xiao-Geng1**
1State Key Laboratory for Mechanical Structure Strength and Vibration, Xi'an Jiaotong University, Xi'an 710049
2Department of Engineering Mechanics, AML & CNMM, Tsinghua University, Beijing 100084
Cite this article:   
XU Yan-Long, CHEN Chang-Qing, TIAN Xiao-Geng 2013 Chin. Phys. Lett. 30 044301
Download: PDF(836KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The band structure and transmission coefficient of the two-dimensional ternary locally resonant phononic crystal are computed by the finite element method with the calculated frequency up to 120 kHz. The band gap in the high frequency range is found and considered as the Bragg band gap in the locally resonant phononic crystal which has the locally resonant band gap in the low frequency range normally. Then, a composite phononic crystal by hybridizing the Bragg scattering phononic crystal and the locally resonant phononic crystal is proposed. Simultaneous Bragg and locally resonant band gaps are displayed and discussed for the composite phononic crystal. The results show that the simultaneous Bragg band gap and locally resonant band gap can be tuned.
Received: 29 November 2012      Published: 28 April 2013
PACS:  43.20.+g (General linear acoustics)  
  43.40.+s (Structural acoustics and vibration)  
  02.60.-x (Numerical approximation and analysis)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/044301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/044301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Yan-Long
CHEN Chang-Qing
TIAN Xiao-Geng
[1] Kushwaha M S et al 1993 Phys. Rev. Lett. 71 2022
[2] Sigalas M M 1998 J. Appl. Phys. 84 3026
[3] Liu Z Y et al 2000 Phys. Rev. B 62 2446
[4] Wu F G et al 2001 Chin. Phys. Lett. 18 785
[5] Goffaux C and Sanchez-Dehesa J 2003 Phys. Rev. B 67 144301
[6] Kuang W M et al 2004 Phys. Lett. A 332 481
[7] Khelif A et al 2006 Phys. Rev. E 74 075118
[8] Yang S X et al 2004 Phys. Rev. Lett. 93 024301
[9] Li J et al 2006 Phys. Rev. B 73 54302
[10] Wu L Y et al 2008 Phys. Lett. A 372 2701
[11] Liu Z Y et al 2000 Science 289 1734
[12] Oudich M et al 2010 Appl. Phys. Lett. 97 193503
[13] Wang G et al 2004 Phys. Rev. Lett. 93 154302
[14] Hirsekorn M 2004 Appl. Phys. Lett. 84 3364
[15] Khelif A et al 2010 Phys. Rev. B 81 214303
[16] Hsu J C and Wu T T 2007 Appl. Phys. Lett. 90 201904
[17] Romero-García V, Sánchez-Pérez J V and Garcia-Raffi L M 2011 J. Appl. Phys. 110 014904
[18] Sigalas M et al 2005 Z. Kristallogr. 220 765
[19] Croenne C et al 2011 AIP Adv. 1 041401
[20] Lai Y et al 2011 Nat. Mater. 10 620
[21] Zhang S and Cheng J C 2003 Phys. Rev. B 68 245101
[22] Zhang S et al 2003 Chin. Phys. Lett. 20 1303
[23] Xu Y L et al 2012 Physica B 407 1995
[24] COMSOL 3.4a (The COMSOL Group, Stockholm, Sweden)
[25] Wang G et al 2006 Chin. Phys. 15 407
[26] Zhao H G et al 2005 Phys. Rev. B 72 012301
[27] Hsiao F L et al 2007 J. Appl. Phys. 101 044903
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 044301
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 044301
[3] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 044301
[4] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 044301
[5] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 044301
[6] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 044301
[7] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 044301
[8] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 044301
[9] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 044301
[10] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 044301
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 044301
[12] Jie Hu, Bin Liang, Xiao-Jun Qiu. Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound[J]. Chin. Phys. Lett., 2018, 35(2): 044301
[13] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 044301
[14] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 044301
[15] Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu, Xiao-Dong Chai. Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate[J]. Chin. Phys. Lett., 2016, 33(01): 044301
Viewed
Full text


Abstract