Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 036201    DOI: 10.1088/0256-307X/30/3/036201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
A Novel Micro-Scale Plastic Deformation Feature on a Bulk Metallic Glass Surface under Laser Shock Peening
WEI Yan-Peng1, WEI Bing-Chen2, WANG Xi1, XU Guang-Yue2, LI Lei3, WU Xian-Qian1, SONG Hong-Wei1, HUANG Chen-Guang1**
1Key Laboratory for Mechanics in Fluid-Solid Coupling Systems, Chinese Academy of Sciences, Beijing 100190
2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
3Sinosteel Corporation, Beijing 100190
Cite this article:   
WEI Yan-Peng, WEI Bing-Chen, WANG Xi et al  2013 Chin. Phys. Lett. 30 036201
Download: PDF(629KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Laser shocking peening is a widely applied surface treatment technique that can effectively improve the fatigue properties of metal parts. We observe many micro-scale arc plastic steps on the surface of Zr47.9Ti0.3Ni3.1Cu39.3Al9.4 metallic glass subjected to the ultra-high pressure and strain rate induced by laser shock peening. The scanning electronic microscopy and atomic force microscopy show that the arc plastic step (APS) has an arc boundary, 50–300 nm step height, 5–50 μm radius and no preferable direction. These APSs have the ability to accommodate plastic deformation in the same way as shear band. This may indicate a new mechanism to accommodate the plastic deformation in amorphous metallic glass under high pressure, ultra-high strain rates, and short duration.
Received: 15 November 2012      Published: 29 March 2013
PACS:  62.20.fq (Plasticity and superplasticity)  
  62.50.Ef (Shock wave effects in solids and liquids)  
  81.40.Np (Fatigue, corrosion fatigue, embrittlement, cracking, fracture, and failure)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/036201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/036201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Yan-Peng
WEI Bing-Chen
WANG Xi
XU Guang-Yue
LI Lei
WU Xian-Qian
SONG Hong-Wei
HUANG Chen-Guang
[1] Chen M W 2011 Npg. Asia Mater. 3 82
[2] Wang W H 2009 Adv. Mater. 21 4524
[3] Spaepen F 2006 Nat. Mater. 5 7
[4] Li H F, Wang Y B, Zheng Y F and Lin J P 2012 J. Biomed. Mater. Res. B 100 1721
[5] Chen B Q, Li Y, Yi M, Li R, Pang S J, Wang H and Zhang T 2012 Scr. Mater. 66 1057
[6] Wu G J, Li R, Liu Z Q, Chen B Q, Li Y, Cai Y and Zhang T 2012 Intermetallics 24 50
[7] Zhang Y, Wang W H and Greer A L 2006 Nat. Mater. 5 857
[8] Peyre P and Fabbro R 1995 Opt. Quantum Electron. 27 1213
[9] Guo Y B and Caslaru R 2011 J. Mater. Process. Tech. 211 729
[10] Reitz W 2002 Surf. Eng. 18 1
[11] Wei B C, Zhang T H, Zhang L C, Xing D M, Li W H and Liu Y 2007 Mat. Sci. Eng. A 449 962
[12] Gao Y F, Wang L, Bei H and Nieh T G 2011 Acta Mater. 59 4159
[13] Liu L F, Dai L H, Bai Y L, Wei B C and Eckert J 2005 Mater. Chem. Phys. 93 174
[14] Lee J Y, Han K H, Park J M, Chattopadhyay K, Kim W T and Kim D H 2006 Acta Mater. 54 5271
[15] Wu X, Huang C, Wang X and Song H 2011 Int. J. Impact Eng. 38 322
[16] Turneaure S J, Winey J M and Gupta Y M 2004 Appl. Phys. Lett. 84 1692
[17] Meng J X, Ling Z, Jiang M Q, Zhang H S and Dai L H 2008 Appl. Phys. Lett. 92 171909
[18] Mashimo T, Togo H, Zhang Y, Uemura Y, Kinoshita T, Kodama M and Kawamura Y 2006 Appl. Phys. Lett. 89 241904
[19] Yuan F, Prakash V and Lewandowski J J 2007 J. Mater. Res. 22 402
[20] Schuh C A, Lund A C and Nieh T G 2004 Acta Mater. 52 5879
[21] Schuh C A and Nieh T G 2004 J. Mater. Res. 19 46
[22] Dalla Torre F H, Klaumuenzer D, Maass R and Loeffler J F 2010 Acta Mater. 58 3742
[23] Jiang W H, Pinkerton F E and Atzmon M 2005 Acta Mater. 53 3469
[24] Georgarakis K, Aljerf M, Li Y, LeMoulec A, Charlot F, Yavari A R, Chornokhvostenko K, Tabachnikova E, Evangelakis G A, Miracle D B, Greer A L and Zhang T 2008 Appl. Phys. Lett. 93 031907
[25] Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T and Chen M W 2009 Phys. Rev. Lett. 103 075502
[26] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X and Wang W H 2007 Science 315 1385
Related articles from Frontiers Journals
[1] Jian-Qiao Hu, Zhan-Li Liu, Yi-Nan Cui, Feng-Xian Liu, Zhuo Zhuang. A New View of Incipient Plastic Instability during Nanoindentation[J]. Chin. Phys. Lett., 2017, 34(4): 036201
[2] Xu Zhang, Xiang-Cheng Zhang, Qian Li, Fu-Lin Shang. Strain Avalanches in Microsized Single Crystals: Avalanche Size Predicted by a Continuum Crystal Plasticity Model[J]. Chin. Phys. Lett., 2016, 33(10): 036201
[3] Xu Zhang, Zhi Wang, Qian Li, Fu-Lin Shang. Strain Avalanches in Microsized Single Crystals: A Theoretical Study of the Relation between the Avalanche Size and Duration[J]. Chin. Phys. Lett., 2016, 33(09): 036201
[4] HUANG Min-Sheng, ZHU Ya-Xin, LI Zhen-Huan. Dislocation Dissociation Strongly Influences on Frank–Read Source Nucleation and Microplasticy of Materials with Low Stacking Fault Energy[J]. Chin. Phys. Lett., 2014, 31(04): 036201
[5] ZHANG Xu, SHANG Fu-Lin. The Burst Time Duration in Micropillar Deformation[J]. Chin. Phys. Lett., 2014, 31(2): 036201
[6] CUI Yi-Nan, LIU Zhan-Li, ZHUANG Zhuo. Dislocation Multiplication by Single Cross Slip for FCC at Submicron Scales[J]. Chin. Phys. Lett., 2013, 30(4): 036201
[7] MA Dong-Fang, HOU Yan-Jun, CHEN Da-Nian**, WU Shan-Xing, WANG Huan-Ran . A Novel Impact Tension Testing for OFHC Copper Bars under Local Strain Controlled[J]. Chin. Phys. Lett., 2011, 28(1): 036201
[8] GAO Yuan, ZHUANG Zhuo, LIU Zhan-Li, ZHAO Xue-Chuan, ZHANG Zhao-Hui. Characteristic Sizes for Exhaustion-Hardening Mechanism of Compressed Cu Single-Crystal Micropillars[J]. Chin. Phys. Lett., 2010, 27(8): 036201
[9] QIN Kun, YANG Li-Ming, HU Shi-Sheng. Mechanism of Strain Rate Effect Based on Dislocation Theory[J]. Chin. Phys. Lett., 2009, 26(3): 036201
[10] QIN Kun, YANG Li-Ming, HU Shi-Sheng. Strain Rate Sensitivities of Face-Centred-Cubic Metals Using Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2008, 25(7): 036201
Viewed
Full text


Abstract