Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 034301    DOI: 10.1088/0256-307X/30/3/034301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Sparse Representation Algorithm for the Mode Separation and SNR Improvement of Lamb Wave Signals
YU Yong-Ling1, ZHANG Hai-Yan1**, SHI Fang-Fang2, FENG Guo-Rui1, MA Shi-Wei3
1School of Communication and Information Engineering, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072
2Institute of Acoustics, Chinese Academy of Sciences, Beijing 100080
3Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072
Cite this article:   
YU Yong-Ling, ZHANG Hai-Yan, SHI Fang-Fang et al  2013 Chin. Phys. Lett. 30 034301
Download: PDF(536KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A matching pursuit method based on training an over-complete dictionary is investigated. By using the K-singular value decomposition (K-SVD) algorithm, an over-complete dictionary that describes the Lamb wave signals is trained. The results demonstrate that the method can effectively remove redundant information and separate multiple Lamb wave modes. The matching pursuit method with the K-SVD algorithm shows its efficiency for Lamb wave signal processing.
Received: 24 October 2012      Published: 29 March 2013
PACS:  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/034301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/034301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Yong-Ling
ZHANG Hai-Yan
SHI Fang-Fang
FENG Guo-Rui
MA Shi-Wei
[1] Victor G 2005 J. Intell. Mater. Syst. Struct. 16 291
[2] Zhang H Y, Chen X H, Cao Y P and Yu J B 2010 Chin. Phys. Lett. 27 104301
[3] Xie Z B and Feng J C 2009 Chin. Phys. Lett. 26 030501
[4] Xu T and Wang W W 2011 IEEE Int. Workshop Mach. Learn. Signal Process. 16 493
[5] Elad M and Aharon M 2006 IEEE Trans. Image Process. 15 3736
[6] Aharon M, Elad M and Bruckstein A 2006 IEEE Trans. Signal Process. 54 4311
[7] Christian D S, Tomas D and Joachim M B 2010 IEEE Int. Conf. Acoust. Speech Signal Process. 6 4758
[8] Christian D S, Tomas D and Joachim M B 2012 IEEE Trans. Audio Speech Lang. Process. 20 1698
[9] Zhao N, Xu X and Yang Y 2011 Chin. J. Electron. 19 268
[10] Zhang G M, Zhang C Z and Harvey D M 2012 Ultrasonics 52 351
[11] Zhang G M and Harvey D M 2012 Nondestr Test Eval. 27 1
[12] Zhang G M, Harvey D M and Braden D R 2006 J. Acoust. Soc. Am. 120 862
[13] Hong J C, Sun K H and Kim Y Y 2005 Smart Mater. Struct. 14 548
[14] Raghavan A, Cesnik C E S 2007 Smart Mater. Struct. 16 355
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 034301
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 034301
[3] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 034301
[4] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 034301
[5] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 034301
[6] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 034301
[7] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 034301
[8] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 034301
[9] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 034301
[10] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 034301
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 034301
[12] Jie Hu, Bin Liang, Xiao-Jun Qiu. Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound[J]. Chin. Phys. Lett., 2018, 35(2): 034301
[13] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 034301
[14] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 034301
[15] Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu, Xiao-Dong Chai. Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate[J]. Chin. Phys. Lett., 2016, 33(01): 034301
Viewed
Full text


Abstract