Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 027801    DOI: 10.1088/0256-307X/30/2/027801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Thickness Dependence of Optical Constants of Ultrathin Iron Films
GAO Shang1, LIAN Jie1**, SUN Xiao-Fen2, WANG Xiao1, LI Ping1, LI Qing-Hao3
1 Department of Optical Engineering, Shandong University, Jinan 250100
2Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900
3School of Physics and Microelectronics, Shandong University, Jinan 250100
Cite this article:   
GAO Shang, LIAN Jie, SUN Xiao-Fen et al  2013 Chin. Phys. Lett. 30 027801
Download: PDF(521KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ultrathin iron films with different thicknesses from 7.1 to 51.7 nm are deposited by magnetron sputtering and covered by tantalum layers protecting them from being oxidized. These ultrathin iron films are studied by spectroscopic ellipsometry and transmittance measurement. An extra tantalum film is deposited under the same sputtering conditions and its optical constants and film thickness are obtained by a combination of ellipsometry and transmission measurement. After introducing these obtained optical constants and film thickness into the tantalum-iron film, the optical constants and film thicknesses of ultrathin iron films with different thicknesses are obtained. The results show that combining ellipsometry and transmission measurement improves the uniqueness of the obtained film thickness. The optical constants of ultrathin iron films depend strongly on film thicknesses. There is a broad absorption peak at about 370 nm and it shifts to 410 nm with film thickness decreasing.
Received: 07 September 2012      Published: 02 March 2013
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  42.25.Ja (Polarization)  
  42.25.Bs (Wave propagation, transmission and absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/027801       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/027801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Shang
LIAN Jie
SUN Xiao-Fen
WANG Xiao
LI Ping
LI Qing-Hao
[1] Manago T, Kuramochi H and Akinaga H 2005 J. Appl. Phys. 97 023907
[2] Heinrich B and Bland J A C 2004 Ultrathin Magnetic Structures III (Berlin: Springer)
[3] Spoddig D, K?hler U, Haak M, Kneppe M, Schmitte T, Westphalen A, Theis-Br?hler K, Meckenstock R, You D and Pelzl J 2008 Superlattices Microst. 43 180
[4] Qiu X J, Zhang Y P, He Z H, Bai L, Liu G L, Wang Y, Chen P and Xiong Z H 2006 Acta Phys. Sin. 55 6101 (in Chinese)
[5] Xie J P, Xia A G, Zhang C H, Yang B, Fang Z N and Ye G X 2009 Chin. Phys. Lett. 26 117501
[6] Zhang L J, He K, Jia J F and Xue Q K 2005 Chin. Phys. Lett. 22 203
[7] Wang X, Lian J, Wang G T, Song P, Li P and Gao S 2011 J. Magn. Magn. Mater. 323 2711
[8] Xu Y B, Lu M, Zhai H R, Miao Y Z, Wang H, Zhou S M and Cai J W 1990 Chin. Phys. Lett. 7 377
[9] Hilfiker J N, Singh N, Tiwald T, Convey D, Smith S M, Baker J H and Tompkins H G 2008 Thin Solid Films 516 7979
[10] Zhou Y, Wu G S, Dai W, Li H B and Wang Y A 2010 Acta Phys. Sin. 59 2356 (in Chinese)
[11] Tompkins H G and Tasic S 2000 J. Vac. Sci. Technol. A 18 946
[12] Birgin E G, Chambouleyron I E and Martínez J M 2003 J. Comput. Appl. Math. 152 35
[13] Swanepoel R 1984 J. Phys. E: Sci. Instrum. 17 896
[14] Gao S, Wang S Y, Lian J, Li P and Wang X 2012 Surf. Rev. Lett. 19 1250039
[15] Frederix F, Friedt J M, Choi K H, Campitelli A, Mondelaers D, Maes G and Borghs G 2003 Anal. Chem. 75 6894
[16] Alvarez M M, Khoury J T, Schaaff T G, Shafigullin M N, Vezmar I and Whetten R L 1997 J. Phys. Chem. B 101 3706
[17] Sun Z, Cao C, Cao L, Liang P, Huang X and Song X 2010 Vacuum 84 828
Related articles from Frontiers Journals
[1] Bing Suo, Xiao Zhang, Xinyu Jiang, Feng Yan, Zhengzhi Luo, and Yujin Chen. Atomically Dispersed Ni Single-Atoms Anchored on N-Doped Graphene Aerogels for Highly Efficient Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2022, 39(4): 027801
[2] Guanying Xing, Weixian Zhao, Run Hu, and Xiaobing Luo. Spatiotemporal Modulation of Thermal Emission from Thermal-Hysteresis Vanadium Dioxide for Multiplexing Thermotronics Functionalities[J]. Chin. Phys. Lett., 2021, 38(12): 027801
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 027801
[4] Xin Zhu, Feng Yan, Chunyan Li, Lihong Qi, Haoran Yuan, Yanfeng Liu, Chunling Zhu, and Yujin Chen. Nitrogen and Boron Co-Doped Carbon Nanotubes Embedded with Nickel Nanoparticles as Highly Efficient Electromagnetic Wave Absorbing Materials[J]. Chin. Phys. Lett., 2021, 38(1): 027801
[5] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 027801
[6] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 027801
[7] De-Ting Wang, Xian-Chao Wang, Xiao Zhang, Hao-Ran Yuan, Yu-Jin Chen. Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2020, 37(4): 027801
[8] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 027801
[9] Ju-Geng Li, Sen-Miao Yang, Xin Chen, Nai-Feng Zhuang, Qi-Biao Zhu, An-Hua Wu, Xian Lin, Guo-Hong Ma, Zuan-Ming Jin, Jian-Quan Yao. Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb$_{3}$Sc$_{2}$Al$_{3}$O$_{12}$ Crystal Investigated by Terahertz Time-Domain Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(4): 027801
[10] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 027801
[11] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 027801
[12] Lan-Qing Zhou, Yan-Bang Zhang, Teng-Fei Yan, Ying Li, Guo-Zhi Jia, Huai-Zhe Xu, Xin-Hui Zhang. Third-Order Nonlinear Optical Response near the Plasmon Resonance Band of Cu$_{2-x}$Se Nanocrystals[J]. Chin. Phys. Lett., 2017, 34(1): 027801
[13] Xiao-Wei Han, Lei Hou, Lei Yang, Zhi-Quan Wang, Meng-Meng Zhao, Wei Shi. Optical-Electrical Characteristics and Carrier Dynamics of Semi-Insulation GaAs by Terahertz Spectroscopic Technique[J]. Chin. Phys. Lett., 2016, 33(12): 027801
[14] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 027801
[15] Meng Zhao, Chun-Hua Xu, Wei-Jie Hu, Wen-Jun Wang, Li-Wei Guo, Xiao-Long Chen. Observation of Two-Photon Absorption and Nonlinear Refraction in AlN[J]. Chin. Phys. Lett., 2016, 33(10): 027801
Viewed
Full text


Abstract