Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 027302    DOI: 10.1088/0256-307X/30/2/027302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Research with KNbO3 Bulk and Surface Properties Based on Density Functional Theory
SUN Hong-Guo1**, ZHOU Zhong-Xiang2, YUAN Cheng-Xun2, YANG Xiao-Niu1
1Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
2Department of Physics, Harbin Institute of Technology, Harbin 150001
Cite this article:   
SUN Hong-Guo, ZHOU Zhong-Xiang, YUAN Cheng-Xun et al  2013 Chin. Phys. Lett. 30 027302
Download: PDF(537KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The geometrical structure optimization, band structure, density of states, and charge density contour of potassium niobate (KNbO3) in the bulk [100] direction and (100) surface are calculated and analyzed using density functional theory. The elastic constants, which can describe the bonding characteristics and structural stability, are also computed, and the dielectric function, which can be used to calculate all the other optical properties of the material, is evaluated. Local density approximation functional analysis using CASTEP software is also employed. Several similarities and differences are observed in the properties of the KNbO3 bulk and surface. Almost all of the calculated results for the bulk sample are twice those of the surface sample. The results are consistent with the experiment.
Received: 22 September 2012      Published: 02 March 2013
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  77.84.Ek (Niobates and tantalates)  
  78.68.+m (Optical properties of surfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/027302       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/027302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Hong-Guo
ZHOU Zhong-Xiang
YUAN Cheng-Xun
YANG Xiao-Niu
[1] Biaggio I, Zgonik m and Gunter P J 1992 J. Opt. Soc. Am. B 9 1480
[2] Zysset B, Biaggio I and Gunter P 1992 J. Opt. Soc. Am. B 9 380
[3] Nakamura K, Tokiwa and Kawamura Y 2002 J. Appl. Phys. 91 9272
[4] Li D F, Guo Z C, Li B L, Dong H N and Xiao H Y 2011 Chin. Phys. Lett. 28 086802
[5] Gopalan V and Raj R 1995 J. Am. Ceram. Soc. 78 1825
[6] Yamanouchi K, Odagawa H, Kojima T and Matsumura T 1997 Electron. Lett. 33 193
[7] Zaldo C, Gill D S and Eason R W 1994 Appl. Phys. Lett. 65 502
[8] Zhao N, Wang Y H, Zhao X Y, Zhang M and Gong S 2011 Chin. Phys. Lett. 28 077101
[9] Chow A F, Lichtenwalner D J, Woolcott R R, Graettinger T M, Auciello O, kingon A I, Boatner L A and Parikh N R 1994 Appl. Phys. Lett. 65 1073
[10] Jin D, Rehman A, Qain H Q, Jiang L Z, Zhang H J, Li H Y, He P M and Bao S N 2011 Chin. Phys. Lett. 28 116804
[11] Beckers L, Schubert J, Zander W, Ziesmann J, Eckau A, Leinenbach P and Buchal C 1998 J. Appl. Phys. 83 3305
[12] Gong S, Wang Y H, Zhao X Y, Zhang M, Zhao N and Duan Y F 2011 Chin. Phys. Lett. 28 087402
[13] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys: Condens. Matter 14 2717
[14] Bai Y L, Zhou X L, Chen X R and Gou Q Q 2003 Chin. Phys. Lett. 20 2019
[15] Wei H Y, Xiong X L, Song H T and Luo S Z 2010 Chin. Phys. Lett. 27 097102
[16] Jia Y, Ma B X, Shen S G, Yang S E 1999 Acta Phys. Sin. (Overseas Ed.) 8 46
[17] Sun H G, Zhou Z X, Shen Y Q and Yuan C X 2010 Compd. Mater. Sci. 50 338
[18] Labidi S, Labidi M, Meradji H, Ghemid S and Hassan F E 2010 Acta Phys. Sin. 48 126 (in Chinese)
[19] Didomenico M and Wemple S H 1969 J. Appl. Phys. 40 720
[20] Jellison G E, Paulauskas I, Boatner L A and Singh D J 2006 Phys. Rev. B 74 155130
[21] Wang Y, Shen Y Q and Zhou Z X 2011 Physica B 406 850
[22] Sun H G, Zhou Z X, Yuan C X, Yang W L and Wang H 2012 Chin. Phys. Lett. 29 017303
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 027302
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 027302
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 027302
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 027302
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 027302
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 027302
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 027302
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 027302
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 027302
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 027302
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 027302
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 027302
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 027302
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 027302
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 027302
Viewed
Full text


Abstract