Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 127101    DOI: 10.1088/0256-307X/30/12/127101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Optoelectronic Properties of Pure and Co Doped Indium Oxide by Hubbard and modified Becke–Johnson Exchange Potentials
H. A. Rahnamaye Aliabad1*, M. Bazrafshan2, H. Vaezi2, Masood Yousaf3, Junaid Munir3, M. A. Saeed3
1Department of Physics, Hakim Sabzevari University, Sabzevar, Iran
2Department of Physics, Khayyam Institute of Higher Education, Mashhad, Iran
3Department of Physics, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
Cite this article:   
H. A. Rahnamaye Aliabad, M. Bazrafshan, H. Vaezi et al  2013 Chin. Phys. Lett. 30 127101
Download: PDF(1373KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Structural and optoelectronic properties of pure and Co doped In2O3 are studied by employing the full-potential linearized augmented plane wave method, which is known to produce highly accurate results. First principles calculations are performed with ordinary generalized gradient approximation (GGA) along with new Hubbard and modified Becke–Johnson exchange (mBJ) potential techniques. Improved band gap results are obtained for In2O3 with GGA+U and mBJ. In the case of mBJ, the band gap values are 3.5 eV and 3.4 eV for rhombohedral and cubic phases, which are in close agreement with the experimental data. Substitution of In by Co 25% alters the energy gap and a spin splitting effect is observed in these phases. For the spin-up state, it remains semiconductor, whereas for the spin-down state it shows semimetallic behavior. The value of static refractive index n(0) is 1.74 for the cubic phase, while in rhombohedral phase the values of n(0) are 1.77 and 1.74 along xx and zz optical axes, respectively. The calculated optical properties conform anisotropy in the rhombohedral phase and these materials can be potential candidates for the optoelectronics applications.
Received: 19 August 2013      Published: 13 December 2013
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Be (Transition metals and alloys)  
  72.25.Dc (Spin polarized transport in semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/127101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/127101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
H. A. Rahnamaye Aliabad
M. Bazrafshan
H. Vaezi
Masood Yousaf
Junaid Munir
M. A. Saeed
[1] Wang K 2008 Transparent Oxide Semiconductors: Fabrication, Properties and Applications (A thesis presented to the University of Waterloo)
[2] Ginley D S, Taylor M P, van Hest M F A M, Young D, Teplin C W, Alleman J L, Dabney M S, Parilla P, Gedvilas L M, Keyes B M, To B, Readey D and Perkins J D 2005 Combinatorial Exploration of Novel Transparent Conducting Oxide Materials, Solar Energy Technologies Program Review Meeting (Denver, CO, 7–10 November 2005)
[3] Prathap P, Subbaiah Y P V, Devika M and Reddy K T R 2006 Mater. Chem. Phys. 100 375
[4] Laux S, Kaiser N, Z?ller A, G?tzelmann R, Lauth H and Bernitzki H 1998 Thin Solid Films 335 1
[5] Aliabad H A R, Hosseini S M, Kompany A, Youssefi A and Kakhki E A 2009 Phys. Status Solidi B 246 1072
[6] Meng X, Tang L and Li J 2010 J. Phys. Chem. C 114 17569
[7] Xiao Z R, Fan X F, Guan L X, Huan C H A, Kuo J L and Wang L 2009 J. Phys.: Condense. Matter 21 272202
[8] Wang C 2009 Metal Organic Chemical Vapor Deposition of Indium Oxide for Ozone Sensing (Berlin: Fraunhofer-Verlag)
[9] Wilson A J C 1992 The International Union of Crystallography, International Tables for Crystallography (Kluwer Academic Publishers, Dordrecht, the Netherlands)
[10] F Fuchs and F Bechstedt 2008 Phys. Rev. B 77 155107
[11] Medvedeva J E 2006 Phys. Rev. Lett. 97 086401
[12] Subías G, Stankiewicz J, Villuendas F, Lozano M P and García J 2009 Phys. Rev. B 79 094118
[13] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J, Inst. fur Materials Chemistry (TU Vienna) http://www.wien2k.at/
[14] Petukhov A G and Mazin I I 2003 Phys. Rev. B 67 153106
[15] Novak P, Kunes J, Chaput L and Pickett W E 2006 Phys. Status Solidi B 243 563
[16] Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929
[17] Klein A 2000 Appl. Phys. Lett. 77 2009
[18] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[19] Karazhanov S Z, Ravindran P, Vajeeston P, Ulyashin A, Finstad T G and Fjellvag H 2007 Phys. Rev. B 76 075129
[20] Khan I, Ahmad I, Amin B, Murtaza G and Ali Z 2011 Physica B 406 2509
[21] Meng X, Tang L and Li J 2010 J. Phys. Chem. C 114 17569
[22] Pellicer E, Menéndez E, Fornell J, Nogués J, Vantomme A, Temst K and Sort J 2013 J. Phys. Chem. C 117 17084
[23] Fox M 2001 Optical Properties of Solids (Oxford: Oxford University Press)
[24] Hamberg I, Granqvist C G, Berggren K F, Sernelius B E and Engstr?m L 1984 Phys. Rev. B 30 3240
[25] Wang C Y, Cimalla V, Romanus H, Kups T, Ecke G, Stauden T, Ali M, Lebedev V, Pezoldt J and Ambacher O 2006 Appl. Phys. Lett. 89 011904
[26] Prewitt C T, Shaxnon R D, Rogers D B and Sleight A W 1969 Inorg. Chem. 8 1985
[27] Marezio M 1966 Acta Crystallogr. 20 723
[28] Yousaf M, Saeed M A, Isa A R M, Aliabad H A R, Sahar M R 2013 Chin. Phys. Lett. 30 077402
[29] Yousaf M, Saeed M A, Isa A R M, Shaari A and Aliabad H A R 2012 Chin. Phys. Lett. 29 107401
[30] Yousaf M, Saeed M A, Ahmed R, Alsardia M M, Isa A R M and Shaari A 2012 Commun. Theor. Phys. 58 777
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 127101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 127101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 127101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 127101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 127101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 127101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 127101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 127101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 127101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 127101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 127101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 127101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 127101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 127101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 127101
Viewed
Full text


Abstract