Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 123701    DOI: 10.1088/0256-307X/30/12/123701
ATOMIC AND MOLECULAR PHYSICS |
Development of an Integrating Sphere Cold Atom Clock
ZHENG Ben-Chang1, CHENG Hua-Dong1**, MENG Yan-Ling1, XIAO Ling1, WAN Jin-Yin1, LIU Liang1,2**
1Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
2Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
Cite this article:   
ZHENG Ben-Chang, CHENG Hua-Dong, MENG Yan-Ling et al  2013 Chin. Phys. Lett. 30 123701
Download: PDF(540KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Ramsey fringes with a linewidth of 45 Hz and a signal-to-noise ratio of 120 are demonstrated for a integrating sphere atom clock. The cycle time of the atom clock is reduced to 80 ms with the help of a pulsed cooling method. This result indicates that the short-term stability of the clock is in the order of 10?12.
Received: 14 August 2013      Published: 13 December 2013
PACS:  37.10.De (Atom cooling methods)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.62.Fi (Laser spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/123701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/123701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Ben-Chang
CHENG Hua-Dong
MENG Yan-Ling
XIAO Ling
WAN Jin-Yin
LIU Liang
[1] Aldo G, Salvatore M, Filippo L and Claudio C 2006 Phys. Rev. A 74 043401
[2] Boudot R, Guerandel S, de Clercq E, Dimarcq N and Clairon A 2009 IEEE Trans. Instrum. Meas. 58 1217
[3] Ramírez-Martínez F, Lacro?tea C, Rosenbuscha P, Reinhardb F, Deutschb C, Schneiderb T and Reichelb J 2011 Adv. Space Res. 47 247
[4] Esnault F X, Perrin S, Tremine S, Guerandel S, Holleville D, Gerard A, Dimarcq N and Clairon A 2006 Frequency Time Forum (EFTF) (Braunschweig 27–30 March 2006) p 237
[5] Tremine S, Guerandel S, Holleville D, Clairon A and Dimarcq N 2004 Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition (Montreal, 23–27 August 2004) p 65
[6] Esnault F X, Rossetto N, Holleville D, Delporte J and Dimarcq N 2011 Adv. Space Res. 47 854
[7] Cheng H D, Zhang W Z, Ma H Y, Liu L and Wang Y Z 2009 Phys. Rev. A 79 023407
[8] Wang X C, Cheng H D, Zheng B C, Meng Y L, Xiao L, Liu L and Wang Y Z 2011 Joint Conference of the IEEE International Frequency Control Symposium and the European Frequency and Time Forum (San Francisco 2–5 May 2011) p 1
[9] Kokkelmans S, Verhaar B J, Gibble K and Heinzen D J 1997 Phys. Rev. A 56 R4389
[10] Cheng H D, Wang X C, Xiao L, Zhang W Z, Liu L and Wang Y Z 2011 Chin. Phys. B 20 023701
[11] Wang B, Lü D S, Qu Q Z, Zhao J B, Li T, Liu L and Wang Y Z 2011 Chin. Phys. Lett. 28 063701
Related articles from Frontiers Journals
[1] Zhu Ma, Chengyin Han, Xunda Jiang, Ruihuan Fang, Yuxiang Qiu, Minhua Zhao, Jiahao Huang, Bo Lu, and Chaohong Lee. Production of $^{87}$Rb Bose–Einstein Condensate in an Asymmetric Crossed Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(10): 123701
[2] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 123701
[3] Yadong Wu, Zengming Meng, Kai Wen, Chengdong Mi, Jing Zhang, and Hui Zhai. Active Learning Approach to Optimization of Experimental Control[J]. Chin. Phys. Lett., 2020, 37(10): 123701
[4] Wei Qi, Ming-Cheng Liang, Han Zhang, Yu-Dong Wei, Wen-Wei Wang, Xu-Jie Wang, Xibo Zhang. Experimental Realization of Degenerate Fermi Gases of $^{87}$Sr Atoms with 10 or Two Spin Components[J]. Chin. Phys. Lett., 2019, 36(9): 123701
[5] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 123701
[6] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 123701
[7] Jiang-Ling Yang, Yun Long, Wei-Wei Gao, Lan Jin, Zhan-Chun Zuo, Ru-Quan Wang. Enhanced Loading of $^{40}$K from Natural Abundance Potassium Source with a High Performance 2D$^{+}$ MOT[J]. Chin. Phys. Lett., 2018, 35(3): 123701
[8] Xiu-Mei Wang, Yan-Ling Meng, Ya-Ning Wang, Jin-Yin Wan, Ming-Yuan Yu, Xin Wang, Ling Xiao, Tang Li, Hua-Dong Cheng, Liang Liu. Dick Effect in the Integrating Sphere Cold Atom Clock[J]. Chin. Phys. Lett., 2017, 34(6): 123701
[9] Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong, Kai Li, Kai-Jun Jiang. Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap[J]. Chin. Phys. Lett., 2016, 33(07): 123701
[10] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 123701
[11] Lin Li, Qiu-Zhi Qu, Bin Wang, Tang Li, Jian-Bo Zhao, Jing-Wei Ji, Wei Ren, Xin Zhao, Mei-Feng Ye, Yuan-Yuan Yao, De-Sheng Lü, Liang Liu. Initial Tests of a Rubidium Space Cold Atom Clock[J]. Chin. Phys. Lett., 2016, 33(06): 123701
[12] YU Wei-Wei, YU Rong-Mei, CHENG Yong-Jun. Tune-Out Wavelengths for the Rb Atom[J]. Chin. Phys. Lett., 2015, 32(12): 123701
[13] ZHANG Feng, LONG Yun, YANG Jiang-Ling, MA Guo-Qiang, YIN Ji-Ping, WANG Ru-Quan. High-Performance Sodium Bose–Einstein Condensate Apparatus with a Hybrid Trap and Long-Distance Magnetic Transfer[J]. Chin. Phys. Lett., 2015, 32(12): 123701
[14] WANG Qiang, LIN Yi-Ge, GAO Fang-Lin, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. A Longitudinal Zeeman Slower Based on Ring-Shaped Permanent Magnets for a Strontium Optical Lattice Clock[J]. Chin. Phys. Lett., 2015, 32(10): 123701
[15] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 123701
Viewed
Full text


Abstract