Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 110302    DOI: 10.1088/0256-307X/30/11/110302
GENERAL |
Impact of Cross-Phase Modulation Induced by Classical Channels on the CV-QKD in a Hybrid System
CHEN Yan, SHEN Yong, TANG Guang-Zhao, ZOU Hong-Xin**
Department of Physics, National University of Defense Technology, Changsha 410073
Cite this article:   
CHEN Yan, SHEN Yong, TANG Guang-Zhao et al  2013 Chin. Phys. Lett. 30 110302
Download: PDF(501KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We calculate the magnitude of cross phase modulation (XPM) induced by classical channels, and analyze its impact on quantum secure key rate. The results show that the XPM induced by classical signals is small and its impact on the quantum key distribution can be neglected.
Received: 15 May 2013      Published: 30 November 2013
PACS:  03.67.-a (Quantum information)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.55.Ah (General laser theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/110302       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/110302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Yan
SHEN Yong
TANG Guang-Zhao
ZOU Hong-Xin
[1] ID Quantique http://www.idquantique.com
[2] MagiQ Technologies http://www.magiqtech.com
[3] Jin X M et al 2012 Sci. Rep. 6 262
[4] Yamada T et al 2003 The 16th Annual Meeting of the IEEE 2 744
[5] Xia T J et al 2006 Optical Fiber Communication Conference and Exposition, and the National Fiber Optic Engineers Conference, Tech. Dig.(CD) (Washington, DC: Optical Society of America) paper OTuJ7
[6] Xavier G B et al 2009 AIP Conf. Proc. 327
[7] Peters N A 2009 New J. Phys. 11 045012
[8] Eraerds P, Walenta N, Legre M, Gisin N and binden H Z 2010 New J. Phys. 12 063027
[9] Chapuran T E et al 2009 New J. Phys. 11 105001
[10] Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[11] Qi B et al 2010 New J. Phys. 12 10304
[12] Yamamoto S et al 1990 J. Lightwave Technol. 8 1716
[13] Warm S, Winter M, Petermann k 2012 IEEE Photon. Technol. Lett. 24 733
[14] Bononi A et al 2009 J. Lightwave Technol. 27 3974
[15] Bigo S et al 2008 Dig. IEEE/LEOS Summer Topical Meetings p 125
[16] Bertran-Pardo O et al 2008 IEEE Photon. Technol. Lett. 20 1314
[17] Qi B et al 2007 Phys. Rev. A 76 052323
[18] Leibrich J et al 2002 IEEE Photon. Technol. Lett. 14 155
[19] Ho K P et al 2008 IEEE J. Sel. Top. Quantum Electron. 10 421
[20] Lee Jri 2010 IEEE J. Solid-State Circuits 45 264
[21] Shen Y and Zou H X 2010 Acta Phys. Sin. 59 1473 (in Chinese)
[22] Lodewyck J et al 2007 Phys. Rev. A 76 042305
[23] Shen Y et al 2010 Phys. Rev. A 82 022317
[24] Chau H F 2002 Phys. Rev. A 66 060302
[25] Grosshans F et al 2003 Nature 421 238
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 110302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 110302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 110302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 110302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 110302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 110302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 110302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 110302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 110302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 110302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 110302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 110302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 110302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 110302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 110302
Viewed
Full text


Abstract