Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 108701    DOI: 10.1088/0256-307X/30/10/108701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Osmolyte Effects on the Unfolding Pathway of β-Lactoglobulin
MENG Wei, PAN Hai, QIN Meng**, CAO Yi**, WANG Wei
National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
MENG Wei, PAN Hai, QIN Meng et al  2013 Chin. Phys. Lett. 30 108701
Download: PDF(729KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract There are large amounts of osmolytes inside cells, which impact many physiological processes by complicated mechanisms. The osmolyte effects on the stability and folding of proteins have been studied in detail using simple two-state folding proteins. However, many important functional proteins fold in complex pathways involving various intermediates. Little is known about the osmolyte effects on the folding and unfolding of these proteins. It is noted that β-lactoglobulin (BLG) is an example of such proteins, whose unfolding involves an obvious intermediate state. Using equilibrium chemical denaturation and stopped-flow kinetics, we investigate the unfolding of BLG in the presence of different osmolytes, e.g., glycerol, ethylene glycol (EG) and poly(ethylene glycol)400 (PEG400). It is found that all these osmolytes can stabilize the unfolding intermediate by modulating the relative unfolding kinetics of the native and the intermediate states. The stabilization effects are similar for EG and PEG400 but distinct for glycerol. Since the unfolding intermediates of many proteins are directly related to protein misfolding diseases, evaluation of the osmolyte effects for the unfolding of these proteins in vitro should be beneficial for the understanding of the occurrence of the related diseases in vivo.
Received: 28 June 2013      Published: 21 November 2013
PACS:  87.15.hm (Folding dynamics)  
  87.15.bg (Tertiary structure)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/108701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/108701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MENG Wei
PAN Hai
QIN Meng
CAO Yi
WANG Wei
[1] Yancey P H, Clark M E, Hand S C, Bowlus R D and Somero G N 1982 Science 217 1214
[2] Nagelhus E A, Amiry-Moghaddam M, Lehmann A and Ottersen O P 1994 Advances in Experimental Medicine and Biology 359 325
[3] Taneja S and Ahmad F 1994 Biochem. J. 303 147
[4] Anjum F, Rishi V and Ahmad F 2000 Biochim. Biophys. Acta 1476 75
[5] Haque I, Singh R, Ahmad F and Moosavi-Movahedi A A 2005 FEBS Lett. 579 3891
[6] Haque I, Singh R, Moosavi-Movahedi A A and Ahmad F 2005 Biophys. Chem. 117 1
[7] Haque I, Islam A, Singh R, Moosavi-Movahedi A A and Ahmad F 2006 Biophys. Chem. 119 224
[8] Bhat R and Timasheff S N 1992 Protein Sci. 1 1133
[9] Bolen D W and Baskakov I V 2001 J. Mol. Biol. 310 955
[10] Parsegian V A, Rand R P and Rau D C 2000 Proc. Natl. Acad. Sci. U.S.A. 97 3987
[11] Lee J C and Timasheff S N 1981 J. Biol. Chem. 256 7193
[12] Arakawa T, Bhat R and Timasheff S N 1990 Biochemistry 29 1914
[13] Bolen D W 2004 Methods 34 312
[14] Lin T Y and Timasheff S N 1996 Protein Sci. 5 372
[15] Arakawa T, Bhat R and Timasheff S N 1990 Biochemistry 29 1924
[16] Auton M and Bolen D W 2005 Proc. Natl. Acad. Sci. U.S.A. 102 15065
[17] Wang J and Wang W 1998 Chin. Phys. Lett. 15 385
[18] Qin M, Wang J and Wang W 2003 Chin. Phys. Lett. 20 1883
[19] Xu W X, Wang J and Wang W 2005 Chin. Phys. Lett. 22 258
[20] Wang J and Wang W 1999 Nat. Struct. Biol. 6 1033
[21] Du F, Zhou Z, Mo Z Y, Shi J Z, Chen J and Liang Y 2006 J. Mol. Biol. 364 469
[22] Lu D N and Liu Z 2008 J. Phys. Chem. B 112 2686
[23] Huang Y Q and Liu Z R 2009 J. Mol. Biol. 393 1143
[24] Yang B, Song Z, Zheng X and Zhao Y 2012 Sci. Chin. Chem. 55 1351
[25] Chang L, Guo X, Zhang J, Wang J and Wang W 2011 Sci. Chin. Phys. Mech. Astron. 54 2237
[26] Chang Y C and Oas T G 2010 Biochemistry 49 5086
[27] Mukaiyama A, Koga Y, Takano K and Kanaya S 2008 Proteins 71 110
[28] Wu P and Bolen D W 2006 Proteins 63 290
[29] Speed M A, Wang D I and King J 1996 Nat. Biotechnol. 14 1283
[30] Speed M A, King J and Wang D I 1997 Biotechnol. Bioeng. 54 333
[31] Sakai K, Sakurai K, Sakai M, Hoshino M and Goto Y 2000 Protein Sci. 9 1719
[32] Sakurai K and Goto Y 2006 J. Mol. Biol. 356 483
[33] Sakurai K and Goto Y 2007 Proc. Natl. Acad. Sci. U.S.A. 104 15346
[34] Pan H, Xie J B, Cao Y, Qin M and Wang W 2011 Chin. Phys. Lett. 28 118702
[35] Hamada D, Tanaka T, Tartaglia G G, Pawar A, Vendruscolo M, Kawamura M, Tamura A, Tanaka N and Dobson C M 2009 J. Mol. Biol. 386 878
[36] Viseu M I, Melo E P, Carvalho T I, Correia R F and Costa S M 2007 Biophys. J. 93 3601
[37] Yagi M, Kameda A, Sakurai K, Nishimura C and Goto Y 2008 Biochemistry 47 5996
[38] Jacob M et al 1997 Proc. Natl. Acad. Sci. U.S.A. 94 5622
[39] Jacob M and Schmid F X 1999 Biochemistry 38 13773
[40] Sato S et al 2000 Protein Sci. 9 1601
[41] Arakawa T and Timasheff S N 1985 Biochemistry 24 6756
[42] Xu W and Mu Y 2008 J. Chem. Phys. 128 234506
[43] Xu W X et al 2005 Proteins 61 777
Related articles from Frontiers Journals
[1] Li-Hua Lu, You-Quan Li. Quantum Approach to Fast Protein-Folding Time[J]. Chin. Phys. Lett., 2019, 36(8): 108701
[2] XU Wei-Xin, LI Yang, ZHANG John Z. H.. Calculation of Collective Variable-based PMF by Combining WHAM with Umbrella Sampling[J]. Chin. Phys. Lett., 2012, 29(6): 108701
[3] PAN Hai, XIE Jin-Bing, CAO Yi**, QIN Meng**, WANG Wei . Effects of Labeling Thiophilic FRET Dyes on the Stability and Dimerization Process of β-Lactoglobulin[J]. Chin. Phys. Lett., 2011, 28(11): 108701
[4] SUN Li, WANG Jun, WANG Wei. Dissection of the Zipping-and-Assembly Mechanism for Folding of Model Proteins[J]. Chin. Phys. Lett., 2010, 27(3): 108701
Viewed
Full text


Abstract