Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 107306    DOI: 10.1088/0256-307X/30/10/107306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Hydrogen Storage Capacity Study of a Li+Graphene Composite System with Different Charge States
SUI Peng-Fei, ZHAO Yin-Chang, DAI Zhen-Hong**, WANG Wei-Tian
Computational Physics Laboratory, Institute of Opto-electronic Information Technology, Yantai University, Yantai 264005
Cite this article:   
SUI Peng-Fei, ZHAO Yin-Chang, DAI Zhen-Hong et al  2013 Chin. Phys. Lett. 30 107306
Download: PDF(1396KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on first-principles plane-wave calculations, we firstly reconfirm that the Li+graphene complex can be taken as a hydrogen storage medium with capacity of 12.8wt%. Then metal adsorption properties of this Li+graphene system with different charge states are investigated. Finally, the hydrogen storage ability of the charging system is calculated. Our calculations show that adding positive charge on a Li+graphene composite results in a conspicuous reduction of Li 2s and Li 2p orbital occupation with respect to the C 2p state. As a result, a stronger bonding between Li and graphene is formed, and a special double-layer hydrogen adsorption structure has been found. Compared to the neutral system, utilizing the positive charged Li+graphene to store hydrogen molecules can solve the issue of clustering of metal atoms after releasing hydrogen, and can improve hydrogen storage capacity up to a gravimetric density of 20.4wt%, correspondingly one adsorbed Li atom can effectively absorb up to seven H2 molecules.
Received: 10 May 2013      Published: 21 November 2013
PACS:  73.22.Pr (Electronic structure of graphene)  
  81.05.ue (Graphene)  
  61.48.Gh (Structure of graphene)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/107306       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/107306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUI Peng-Fei
ZHAO Yin-Chang
DAI Zhen-Hong
WANG Wei-Tian
[1] Schlapbach L and Züttel A 2001 Nature 414 353
[2] Zhao Y C et al 2013 Acta Phys. Sin. 62 137301 (in Chinese)
[3] Ruan W et al 2013 Acta Phys. Sin. 62 053103 (in Chinese)
[4] Yoon M et al 2008 Phys. Rev. Lett. 100 206806
[5] Liu W et al 2009 J. Phys. Chem. C 113 2028
[6] Klontzas E et al 2008 Nano Lett. 8 1572
[7] Deng W Q et al 2004 Phys. Rev. Lett. 92 166103
[8] Sun Q et al 2006 J. Am. Chem. Soc. 128 9741
[9] Durgun E et al 2006 Phys. Rev. Lett. 97 226102
[10] Chen G et al 2005 Phys. Rev. B 72 045444
[11] Ao Z M and Peeters F M 2010 Appl. Phys. Lett. 96 253106
[12] Yoon M et al 2007 Nano Lett. 7 2578
[13] Meng S et al 2007 Nano Lett. 7 663
[14] Lee H et al 2009 Phys. Rev. B 80 115412
[15] Ao Z M and Peeters F M 2010 Phys. Rev. B 81 205406
[16] Yildirim T and Ciraci S 2005 Phys. Rev. Lett. 94 175501
[17] Ataca C et al 2009 Phys. Rev. B 79 041406(R)
[18] Ataca C et al 2008 Appl. Phys. Lett. 93 043123
[19] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[20] Kohn W and Sham L 1965 Phys. Rev. 140 A1133
[21] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[22] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[23] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[24] Beheshti E et al 2011 Carbon 49 1561
[25] Okamoto Y and Miyamoto Y 2001 J. Phys. Chem. B 105 3470
[26] Ao Z M et al 2009 J. Appl. Phys. 105 074307
[27] Cabria I et al 2005 J. Chem. Phys. 123 204721
[28] Makov G and Payne M C 1995 Phys. Rev. B 51 4014
[29] Henkelman G et al 2006 Comput. Mater. Sci. 36 354
[30] Kittel C 2005 Introduction Solid State Physics 8th edn (New York: Wiley)
[31] Averill F W 1972 Phys. Rev. B 6 3637
[32] Das A et al 2008 Nat. Nanotechnol. 3 210
[33] Efetov D K and Kim P 2010 Phys. Rev. Lett. 105 256805
Related articles from Frontiers Journals
[1] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 107306
[2] Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu, and Jin-Ming Cai . Topological-Defect-Induced Superstructures on Graphite Surface[J]. Chin. Phys. Lett., 2021, 38(2): 107306
[3] Juan Ren, Song-Bin Zhang, Ping-Ping Liu. Magnetic and Electronic Properties of $\beta$-Graphyne Doped with Rare-Earth Atoms[J]. Chin. Phys. Lett., 2019, 36(7): 107306
[4] Gao Wang, Meng-Qiu Long, Dan Zhang. Fano Resonance Effect in CO-Adsorbed Zigzag Graphene Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(9): 107306
[5] B. Merabet, H. Alamri, M. Djermouni, A. Zaoui, S. Kacimi, A. Boukortt, M. Bejar. Optimal Bandgap of Double Perovskite La-Substituted Bi$_{2}$FeCrO$_{6}$ for Solar Cells: an ab initio GGA+$U$ Study[J]. Chin. Phys. Lett., 2017, 34(1): 107306
[6] ZHANG Lian-Chang, SHI Zhi-Wen, YANG Rong, HUANG Jian. Effects of Pretreatment on the Electronic Properties of Plasma Enhanced Chemical Vapor Deposition Hetero-Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2014, 31(09): 107306
[7] LEI Shu-Lai, LI Bin, HUANG Jing, LI Qun-Xiang, YANG Jin-Long. A First-Principles Investigation of the Carrier Doping Effect on the Magnetic Properties of Defective Graphene[J]. Chin. Phys. Lett., 2013, 30(7): 107306
[8] YAN Wei-Xian. Graphene Quantum Wells and Superlattices Driven by Periodic Linear Potential[J]. Chin. Phys. Lett., 2013, 30(4): 107306
[9] ZHOU Jian-Hui, QIN Tao, SHI Jun-Ren. Intra-Valley Spin-Triplet p+ip Superconducting Pairing in Lightly Doped Graphene[J]. Chin. Phys. Lett., 2013, 30(1): 107306
[10] HU Shi-Jie,DU Wei,ZHANG Gui-Ping,GAO Miao,LU Zhong-Yi,WANG Xiao-Qun**. Exact Results for Intrinsic Electronic Transport in Graphene[J]. Chin. Phys. Lett., 2012, 29(5): 107306
[11] MA Peng,JIN Zhi**,GUO Jian-Nan,PAN Hong-Liang,LIU Xin-Yu,YE Tian-Chun,WANG Hong,WANG Guan-Zhong. Chemical Vapour Deposition Graphene Radio-Frequency Field-Effect Transistors[J]. Chin. Phys. Lett., 2012, 29(5): 107306
[12] Ashkan Horri, Seyedeh Zahra Mirmoeini. Analysis of a Graphane p–n Junction Using the Green Function Method[J]. Chin. Phys. Lett., 2014, 31(08): 107306
Viewed
Full text


Abstract