Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 017402    DOI: 10.1088/0256-307X/30/1/017402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Experimental Investigation of the Electronic Structure of Ca0.83La0.17Fe2As2
HUANG Yao-Bo1, RICHARD Pierre1**, WANG Ji-Hui2, WANG Xiao-Ping1,3, SHI Xun1,3, XU Nan1, WU Zheng2, LI Ang2, YIN Jia-Xin1, QIAN Tian1, LV Bing2, CHU Ching-Wu2, PAN Shu-Heng2,1, SHI Ming3, DING Hong1**
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Texas Center for Superconductivity and Department of Physics, University of Houston, TX 77204-5002, USA
3Paul Scherrer Institut, Swiss Light Source, CH-5232 Villigen PSI, Switzerland
Cite this article:   
HUANG Yao-Bo, RICHARD Pierre, WANG Ji-Hui et al  2013 Chin. Phys. Lett. 30 017402
Download: PDF(1053KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We performed a combined angle-resolved photoemission spectroscopy and scanning tunneling microscopy study of the electronic structure of electron-doped Ca0.83La0.17Fe2As2. A surface reconstruction associated with the dimerization of As atoms is observed directly in the real space, as well as the consequent band folding in the momentum space. Besides this band folding effect, the Fermi surface topology of this material is similar to that reported previously for BaFe1.85Co0.15As2, with Γ-centered hole pockets quasi-nested to M-centered electron pockets by the antiferromagnetic wave vector. Although no superconducting gap is observed by ARPES possibly due to low superconducting volume fraction, a gap-like density of states depression of 7.7±2.9 meV is determined by scanning tunneling microscopy.
Received: 30 October 2012      Published: 04 March 2013
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.55.+v (Tunneling phenomena: single particle tunneling and STM)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/017402       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/017402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Yao-Bo
RICHARD Pierre
WANG Ji-Hui
WANG Xiao-Ping
SHI Xun
XU Nan
WU Zheng
LI Ang
YIN Jia-Xin
QIAN Tian
LV Bing
CHU Ching-Wu
PAN Shu-Heng
SHI Ming
DING Hong
[1] Richard P, Nakayama K, Sato T, Neupane M, Xu Y M, Bowen J H, Chen G F, Luo J L, Wang N L, Dai X, Fang Z, Ding H and Takahashi T 2010 Phys. Rev. Lett. 104 137001
[2] Kimber S A J, Kreyssig A, Zhang Y Z, Jeschke H O, Valent H O, Yokaichiya F, Colombier E, Yan J, Hansen T C, Chatterji T, McQueeney R J, Canfield P C, Goldman A I and Argyriou D N 2009 Nat. Mater. 8 471
[3] Torikachvili M S, Bud'ko S L, Ni N and Canfield P C 2008 Phys. Rev. B 78 104527
[4] Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L and Luo J L 2008 Phys. Rev. B 78 224512
[5] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[6] Lv B, Deng L, Gooch M, Wei F, Sun Y, Meen J K, Xue Y Y, Lorenz B and Chu C W 2011 Proc. Natl. Acad. Sci. USA 108 15705
[7] Gao Z, Qi Y, Wang L, Wang D, Zhang X, Yao C, Wang C and Ma Y 2011 Europhys. Lett. 95 67002
[8] Saha S R, Butch N P, Drye T, Magill J, Ziemak S, Kirshenbaum K, Zavalij K, Lynn J W and Paglione J 2012 Phys. Rev. B 85 024525
[9] Richard P, Sato T, Nakayama K, Takahashi T and Ding H 2011 Rep. Prog. Phys. 74 124512
[10] Neupane M, Richard P, Xu Y M, Nakayama K, Sato T, Takahashi T, Federov A V, Xu G, Dai X, Fang Z, Wang Z, Chen G F, Wang N L, Wen H H and Ding H 2011 Phys. Rev. B 83 094522
[11] Hoffman J E 2011 Rep. Prog. Phys. 74 124513
[12] Zhang P, Richard P, Qian T, Xu Y M, Dai X and Ding H 2011 Rev. Sci. Instrum. 82 043712
[13] A Damascelli 2004 Phys. Scr. T109 61
[14] Terashima K, Sekiba Y, Bowen J H, Nakayama K, Kawahara T, Sato T, Richard P, Xu Y M, Li L J, Cao G H, Xu Z A, Ding H and Takahashi T 2009 Proc. Natl. Acad. Sci. USA 106 7330
[15] Liu C, Kondo T, Ni N, Palczewski A D, Bostwick A, Samolyuk G D, Khasanov R, Shi M, Rotenberg E, Bud'ko S L, Canfield P C and Kaminski A 2009 Phys. Rev. Lett. 102 167004
[16] Zhang Y, Wei J, Ou H W, Zhao J F, Zhou B, Chen F, Xu M, He C, Wu G, Chen H, Arita M, Shimada K, Namatame H, Taniguchi M, Chen X H and Feng D L 2009 Phys. Rev. Lett. 102 127003
Related articles from Frontiers Journals
[1] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 017402
[2] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 017402
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 017402
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 017402
[5] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 017402
[6] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 017402
[7] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 017402
[8] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 017402
[9] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 017402
[10] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 017402
[11] Shi-Hang Na, Wei Wu, and Jian-Lin Luo. Anisotropy Properties of Mn$_{2}$P Single Crystals with Antiferromagnetic Transition[J]. Chin. Phys. Lett., 2020, 37(8): 017402
[12] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 017402
[13] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 017402
[14] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 017402
[15] Yun Xie, Junsheng Feng, Hongjun Xiang, Xingao Gong. Interplay of Strain and Magnetism in FeSe Monolayers[J]. Chin. Phys. Lett., 2019, 36(5): 017402
Viewed
Full text


Abstract