Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 017401    DOI: 10.1088/0256-307X/30/1/017401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Intra-Valley Spin-Triplet p+ip Superconducting Pairing in Lightly Doped Graphene
ZHOU Jian-Hui1**, QIN Tao1, SHI Jun-Ren2
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2International Center for Quantum Materials, Peking University, Beijing 100871
Cite this article:   
ZHOU Jian-Hui, QIN Tao, SHI Jun-Ren 2013 Chin. Phys. Lett. 30 017401
Download: PDF(590KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analyze various possible superconducting pairing states and their relative stabilities in lightly doped graphene. It is shown that, when inter-sublattice electron-electron attractive interaction dominates and the Fermi level is close to the Dirac points, the system will favor intra-valley spin-triplet p+ip pairing state. Based on the novel pairing state, we further propose a scheme for doing topological quantum computation in graphene by engineering local strain fields and external magnetic fields.
Received: 16 October 2012      Published: 04 March 2013
PACS:  74.20.-z (Theories and models of superconducting state)  
  73.22.Pr (Electronic structure of graphene)  
  03.67.Lx (Quantum computation architectures and implementations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/017401       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/017401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Jian-Hui
QIN Tao
SHI Jun-Ren
[1] Novoselov K S et al 2005 Nature 438 197
[2] Zhang Y B et al 2005 Nature 438 201
[3] Castro Neto A H et al 2009 Rev. Mod. Phys. 81 109
[4] Uchoa B and Castro Neto A H 2007 Phys. Rev. Lett. 98 146801
[5] Black-Schaffer A M and Doniach S 2007 Phys. Rev. B 75 134512
[6] Honerkamp C 2008 Phys. Rev. Lett. 100 146404
[7] Hosseini M V and Zareyan M 2012 Phys. Rev. Lett. 108 147001
[8] Nandkishore R et al 2012 Nat. Phys. 8 158
[9] Roy B and Herbut I F 2010 Phys. Rev. B 82 035429
[10] Profeta G et al 2012 Nat. Phys. 8 131
[11] Xue M et al 2012 J. Am. Chem. Soc. 134 6536
[12] Shi J R and Niu Q 2006 arXiv:cond-mat/0610531
[13] Mao L et al 2011 Phys. Rev. Lett. 106 157003
[14] Larkin A J and Ovchinnikov Y N 1965 Sov. Phys. JETP 20 762
[15] Fulde P and Ferrell R A 1964 Phys. Rev. 135 A550
[16] Jang J et al 2011 Science 331 186
[17] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[18] Guinea F et al 2010 Nat. Phys. 6 30
[19] Vozmediano M A H, Katsnelson M I and Guinea F 2010 Phys. Rep. 496 109
[20] Levy N et al 2010 Science 329 544
[21] Chung S B et al 2007 Phys. Rev. Lett. 99 197002
[22] Wu X S et al 2007 Phys. Rev. Lett. 98 136801
Related articles from Frontiers Journals
[1] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 017401
[2] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 017401
[3] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 017401
[4] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 017401
[5] Shuyuan Zhang, Guangyao Miao, Jiaqi Guan, Xiaofeng Xu, Bing Liu, Fang Yang, Weihua Wang, Xuetao Zhu, Jiandong Guo. Superconductivity of the FeSe/SrTiO$_{3}$ Interface in View of BCS–BEC Crossover[J]. Chin. Phys. Lett., 2019, 36(10): 017401
[6] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 017401
[7] Zhidan Li, Qiang Han. Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain[J]. Chin. Phys. Lett., 2018, 35(7): 017401
[8] Zhidan Li, Qiang Han. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling[J]. Chin. Phys. Lett., 2018, 35(4): 017401
[9] Gargee Sharma, Smita Sharma. Theoretical Study of Screening Dependence of Aluminium Doped MgB$_{2}$[J]. Chin. Phys. Lett., 2018, 35(3): 017401
[10] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 017401
[11] ZHAO Zi-Xu, PAN Qi-Yuan, JING Ji-Liang. Holographic Superconductor Models with RF2 Corrections[J]. Chin. Phys. Lett., 2013, 30(12): 017401
[12] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 017401
[13] Aditya M. Vora. Superconducting State Parameters of NbxTayMoz Superconductors[J]. Chin. Phys. Lett., 2010, 27(2): 017401
[14] Aditya M. Vora. Modified Transition Temperature Equation for Superconductors[J]. Chin. Phys. Lett., 2008, 25(6): 017401
[15] Aditya M. Vora. Superconducting State Parameters of CuCZr100-C Binary Amorphous Alloys by Pseudopotential Approach[J]. Chin. Phys. Lett., 2007, 24(9): 017401
Viewed
Full text


Abstract