Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 017301    DOI: 10.1088/0256-307X/30/1/017301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
On the Voltage and Frequency Distribution of Dielectric Properties and ac Electrical Conductivity in Al/SiO2/p-Si (MOS) Capacitors
Ahmet Kaya*, Şemsettin Altındal, Yasemin Şafak Asar, Zekayi Sönmez
Department of Physics, Faculty of Sciences, Gazi University, 06500, Ankara, Turkey
Cite this article:   
Ahmet Kaya, &Scedil, emsettin Alt?ndal et al  2013 Chin. Phys. Lett. 30 017301
Download: PDF(571KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An Al/SiO2/p-Si (MOS) capacitor with a thick (826 ?) interfacial oxide layer (SiO2) which is formed by using the thermal oxidation method is fabricated to investigate both frequency and applied bias voltage dependences of real and imaginary parts of dielectric constant (ϵ' and ϵ") and electric modulus (M' and M"), loss tangent (tanδ) and ac electrical conductivity (σac) in a wide frequency range from 1 kHz to 1 MHz at room temperature. The dielectric properties of the MOS capacitor are obtained using the forward and reverse bias capacitance-voltage (CV) and conductance-voltage (G/ωV) measurements in the applied bias voltage range 1.4–5.6 V. The values of ϵ', ϵ", tanδ, M', M" and σac are found to be strong functions of frequency and applied bias voltage in the depletion region due to excess capacitance Cex and conductance Gex especially at low frequencies. The experimental results show that the interfacial polarization can occur at low frequencies more easily, consequently contributing to the dispersion in ϵ', ϵ", tanδ, M', M" and σac values of the MOS capacitor. The other reason for dispersion in the dielectric properties may be attributed to a particular density distribution of interface states (Nss) localized at the Si/SiO2 interface, as well as space charge carriers and inhomogeneity of interfacial oxide layer. The increase in conductivity with increasing frequency can be attributed to the hopping type conduction mechanism. It can be concluded that the ϵ', ϵ", tanδ, M', M" and σac values of the Al/SiO2/p-Si (MOS) capacitor are strongly dependent on both the frequency and applied bias voltage especially in the depletion region.
Received: 18 July 2012      Published: 04 March 2013
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  77.22.Ch (Permittivity (dielectric function))  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/017301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/017301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ahmet Kaya
&Scedil
emsettin Alt?ndal
Yasemin &Scedil
afak Asar
Zekayi S?nmez
[1] Nicollian E H and Brews J R 1982 Meteal Oxide Semiconductor Physics and Technolnology (New York: John Willey & Sons) chap 5 p 222
[2] Sze S M 1981 Physics of Semiconductor Devices 2nd edn (New York: Willey) chap 7 p 380
[3] Arslan E et al 2010 Microelectron. Eng. 87 1997
[4] Card H C and Rhoderick E H 1971 J. Phys. D 3 1589
[5] Okur S and Yakuphanoglu F 2009 Sens. Actuat. A 149 241
[6] Yahia I S et al 2012 J. Mater. Sci. 47 1719
[7] Karatas S et al 2012 J. Phys. Chem. Solids 73 46
[8] Macedo P B et al 1972 Phys. Chem. Glasses 13 171
[9] Şafak Y et al 2012 J. Appl. Phys. 111 034508
[10] Alt?ndal Ş Kanbur H et al 2008 Microelectron. Eng. 85 1495
[11] Park B H et al 1998 J. Appl. Phys. 84 4428
[12] Fanggao C et al 1996 J. Polimer Sci. Part. B: Polym. Phys. 34 425
[13] Prabakar K et al 2003 Phys. Status Solidi A 199 507
[14] Sattar A A and Rahman S A 2003 Phys. Status Solidi A 200 415
[15] Kyritsis A et al 1995 J. Polym. Sci. Part. B: Polym. Phys. 33 1737
[16] Pissis P and Kyritsis A 1997 Solid-State Electron. 97 105
[17] Zado A et al 2012 J. Semicond. Sci. Technol. 27 035020
[18] ?zdemir O et al 2009 J. Alloys Comp. 475 794
[19] Tataro?lu A et al 2005 Microelectron. Eng. 81 140
[20] Kara S and Varma S 1985 J. Appl. Phys. 58 4256
[21] Ertu?rul R and Tataro?lu A 2012 Chin. Phys. Lett. 29 077304
[22] Afandiyava ? M et al 2008 Microelectron. Eng. 85 247
[23] Parasanna G D et al 2011 Chin. Phys. Lett. 28 117701
[24] Shah M R and Akther Hossain A K M 2012 Chin. Phys. Lett. 29 047803
[25] Cao W Q et al 2011 Chin. Phys. Lett. 28 107701
[26] Yerişkin S A et al 2011 J. Appl. Polm. Sci. 120 390
[27] Mumtaz A and Khan N A 2009 Physica C 469 728
[28] Pakma O et al 2008 J. Phys. D: Appl. Phys. 41 215103
[29] Szu S P and Lin C Y 2003 Mater. Chem. Phys. 82 295
[30] Tataro?lu A et al 2008 Microelectron. Eng. 85 1518
[31] Pakma O et al 2008 Semicond. Sci. Technol. 23 105014
Related articles from Frontiers Journals
[1] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 017301
[2] Wen-Lun Zhang. Improvement of Performance of HfS$_{2}$ Transistors Using a Self-Assembled Monolayer as Gate Dielectric[J]. Chin. Phys. Lett., 2019, 36(6): 017301
[3] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 017301
[4] Bin-Xu, Jing-Ping Xu, Lu Liu, Yong Su. Improvements of Interfacial and Electrical Properties for Ge MOS Capacitor with LaTaON Gate Dielectric by Optimizing Ta Content[J]. Chin. Phys. Lett., 2018, 35(7): 017301
[5] Zhao-Zhao Hou, Gui-Lei Wang, Jia-Xin Yao, Qing-Zhu Zhang, Hua-Xiang Yin. Improvement of Operation Characteristics for MONOS Charge Trapping Flash Memory with SiGe Buried Channel[J]. Chin. Phys. Lett., 2018, 35(5): 017301
[6] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 017301
[7] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 017301
[8] Can Li, Cong-Wei Liao, Tian-Bao Yu, Jian-Yuan Ke, Sheng-Xiang Huang, Lian-Wen Deng. Concise Modeling of Amorphous Dual-Gate In-Ga-Zn-O Thin-Film Transistors for Integrated Circuit Designs[J]. Chin. Phys. Lett., 2018, 35(2): 017301
[9] Zhao-Zhao Hou, Gui-Lei Wang, Jin-Juan Xiang, Jia-Xin Yao, Zhen-Hua Wu, Qing-Zhu Zhang, Hua-Xiang Yin. Improved Operation Characteristics for Nonvolatile Charge-Trapping Memory Capacitors with High-$\kappa$ Dielectrics and SiGe Epitaxial Substrates[J]. Chin. Phys. Lett., 2017, 34(9): 017301
[10] Sheng-Kai Wang, Lei Ma, Hu-Dong Chang, Bing Sun, Yu-Yu Su, Le Zhong, Hai-Ou Li, Zhi Jin, Xin-Yu Liu, Hong-Gang Liu. Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al$_{2}$O$_{3}$ Dielectric[J]. Chin. Phys. Lett., 2017, 34(5): 017301
[11] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 017301
[12] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 017301
[13] Yi-Tao He, Ming Qiao, Lu Li, Gang Dai, Bo Zhang, Zhao-Ji Li. A Lateral Regulator Diode with Field Plates for Light-Emitting-Diode Lighting[J]. Chin. Phys. Lett., 2016, 33(09): 017301
[14] Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, De-Zhao Yu, Xue-Feng Yu, Qi Guo. Hot-Carrier Effects on Total Dose Irradiated 65nm n-Type Metal-Oxide-Semiconductor Field-Effect Transistors[J]. Chin. Phys. Lett., 2016, 33(07): 017301
[15] Lan-Feng Tang, Hai Lu, Fang-Fang Ren, Dong Zhou, Rong Zhang, You-Dou Zheng, Xiao-Ming Huang,. Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination[J]. Chin. Phys. Lett., 2016, 33(03): 017301
Viewed
Full text


Abstract