Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 090601    DOI: 10.1088/0256-307X/29/9/090601
GENERAL |
Magic Wavelengths for a Lattice Trapped Rubidium Four-Level Active Optical Clock
ZANG Xiao-Run, ZHANG Tong-Gang, CHEN Jing-Biao**
Institute of Quantum Electronics, and State Key Laboratory of Advanced Optical Communication System & Network, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871
Cite this article:   
ZANG Xiao-Run, ZHANG Tong-Gang, CHEN Jing-Biao 2012 Chin. Phys. Lett. 29 090601
Download: PDF(741KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

After being pumped from the 5s1/2 ground state to the 6p1/2 state, the population inversion between 6s1/2 and 5p1/2,3/2 can be established for a rubidium four-level active optical clock. We calculate the ac Stark shift due to lattice trapping laser which dominates the frequency shift of clock transition in a lattice trapped rubidium four-level active optical clock. Several magic wavelengths are found, which can form desired optical lattice trapping potential. By choosing a proper intensity and linewidth of the trapping laser, the fractional frequency uncertainty of clock transition due to the ac Stark shift of the trapping laser, is estimated to be below 10−18.

Received: 25 May 2012      Published: 01 October 2012
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/090601       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/090601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZANG Xiao-Run
ZHANG Tong-Gang
CHEN Jing-Biao
[1] Chou C W, Hume D B, Koelemeij J C J, Wineland D J andRosenband T 2010 Phys. Rev. Lett. 104 070802
[2] Katori H 2011 Nat. Photon. 5 203
[3] Ludlow A D et al 2008 Science 319 1805
[4] Allan D W 1966 Proc. IEEE 54 221
[5] Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005
[6] Dicke R H 1953 Phys. Rev. 89 472
[7] Ido T and Katori H 2003 Phys. Rev. Lett. 91 053001
[8] Chen J and Chen X 2005 Proceedings of International Frequency Control Symposium (IEEE, Vancouver, BC 2005) p 608
[9] Chen J 2009 Chin. Sci. Bull. 54 348
[10] Wang Y 2009 Chin. Sci. Bull. 54 347
[11] Yu D and Chen J 2008 Phys. Rev. A 78 013846
[12] Meiser D, Ye J, CarlsonD R and Holland M J 2009 PhysRev. Lett. 102 163601
[13] Yu D and Chen J 2010 Phys. Rev. A 81 023818
[14] Yu D and Chen J 2010 Phys. Rev. A 81 053809
[15] Bohnet J G and et al 2012 Nature 484 78
[16] Zhang T, Wang Y, Zang X, Zhuang W and Chen J 2012 arXiv:1204.4385v1 [physics.atom-ph]
[17] O'Hara K M, Granade S R, Gehm M E, Savard T A Bali S, Freed C and Thomas J E 1999 Phys. Rev. Lett. 82 4204
[18] O'Hara K M, Granade S R, Gehm M E and Thomas J E2001 Phys. Rev. A 63 043403
[19] Zhou X, Chen X, Chen J, Wang Y and Li J 2009 Chin. Phys. Lett. 26 090601
[20] Letokhov V S 2007 Laser Control of Atoms and Molecules (Oxford: Oxford University Press)
[21] Westbrook C I, Watts R N, Tanner C E, Rolston S L, Phillips W D, Lett P D and Gould P L 1990 Phys. Rev. Lett. 65 33
[22] Metcalf H J and van der Straten P 1999 Laser Cooling and Trapping (Berlin: Springer-Verlag)
[23] Arora B, Safronova M S and Clark C W 2007 Phys. Rev. A 76 052509
[24] Sansonetti J E 2006 J. Phys. Chem. Ref. Data 35 301
[25] Ralchenko Y, Kramida A, Reader J and NIST ASD Team 2011 NIST Atomic Spectra Database (version 4.1) http://physics.nist.gov/asd
[26] Safronova M S, Williams C J and Clark C W 2004 Phys. Rev. A 69 022509
Viewed
Full text


Abstract