Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 084707    DOI: 10.1088/0256-307X/29/8/084707
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Applications of the CE/SE Scheme to Incompressible Viscous Flows in Two-Sided Lid-Driven Square Cavities
YANG Duo-Xing1, ZHANG De-Liang2**
1Institute of Crustal Dynamics, Chinese Earthquake Administration, Beijing 100085
2LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Download: PDF(865KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The spacetime conservation element-solution element (CE/SE) method is extended to two-dimensional incompressible viscous flow in a two-sided lid-driven square cavity. Based on the SIMPLE method concept, the preconditioned dual-time scheme is introduced for unsteady computations. The CE/SE-based code is validated by simulating one-sided lid-driven cavity flows. The two-sided lid-driven square cavity problem involves several interesting characteristics being successfully predicted, including development of a pair of off-corner vortices and a free shear layer in the case of parallel wall motion, as well as the appearance of corner vortices for lower Reynolds numbers in the case of anti-parallel motion of the walls. It is found that both the Reynolds number and the direction of the moving walls affect the fluid flow in the cavity.
Received: 01 April 2012      Published: 31 July 2012
PACS:  47.40.Rs (Detonation waves)  
  02.60.Cb (Numerical simulation; solution of equations)  
  82.33.Vx (Reactions in flames, combustion, and explosions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/084707       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/084707
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Bruneau C H and Saad M 2006 Comput. Fluid 35 326
[2] Ghia U et al 1982 J. Comput. Phys. 48 (3) 387
[3] Blohm C H and Kuhlmann H C 2002 J. Fluid Mech. 450 67
[4] Albensoeder S et al 2001 Theor. Comput. Fluid Dyn. 14 223
[5] Kumar N et al 2006 The 2nd International Conference on Computational Mechanics and Simulation (Guwahati, India 8–10 December 2006) p 102
[6] Perumal D A and Dass A K 2010 CFD Lett. 2 13
[7] Chang S C 1995 J. Comput. Phys. 119 295
[8] Venkatachari B S et al 2008 Math. Comput. Simulat. 78 653
[9] Zhang M, Yu S T and Chang S C 2004 AIAA paper 2004-0075
[10] Zhang M C et al 2000 The 1st International Conference on Computational Fluid Dynamics (Kyot, Japan 9–14 July 2000) p 671
[11] Guo Y H et al 2004 Comput. Fluid 33 1349
[12] Yang D X et al 2012 Trans. Porous Med. 92 101
[13] Wang J T et al 2009 Comput. Fluid 38 544
[14] Wang G et al 2010 Chin. Phys. Lett. 27 024701
[15] Dong H F et al 2011 Chin. Phys. Lett. 28 030203
Related articles from Frontiers Journals
[1] Wen-Tao Zan, He-Fei Dong, Tao Hong. Simulation of Double-Front Detonation of Suspended Mixed Cyclotrimethylenetrinitramine and Aluminum Dust in Air[J]. Chin. Phys. Lett., 2017, 34(7): 084707
[2] Wen-Hu Han, Jin Huang, Ning Du, Zai-Gang Liu, Wen-Jun Kong, Cheng Wang. Effect of Cellular Instability on the Initiation of Cylindrical Detonations[J]. Chin. Phys. Lett., 2017, 34(5): 084707
[3] YANG Xian-Jun, WANG Shuai-Chuang, DENG Ai-Dong, GU Zhuo-Wei, LUO Hao. Mechanism and Simulation of Generating Pulsed Strong Magnetic Field[J]. Chin. Phys. Lett., 2014, 31(10): 084707
[4] HAN Xu, ZHOU Jin, LIN Zhi-Yong, LIU Yu . Deflagration-to-Detonation Transition Induced by Hot Jets in a Supersonic Premixed Airstream[J]. Chin. Phys. Lett., 2013, 30(5): 084707
[5] HUANG Yue, JI Hua, LIEN Fue-Sang, TANG Hao. Three-Dimensional Parallel Simulation of Formation of Spinning Detonation in a Narrow Square Tube[J]. Chin. Phys. Lett., 2012, 29(11): 084707
[6] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 084707
[7] LIU Shi-Jie**, LIN Zhi-Yong, SUN Ming-Bo, LIU Wei-Dong . Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure[J]. Chin. Phys. Lett., 2011, 28(9): 084707
[8] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 084707
[9] SUN Xiao-Hui, CHEN Zhi-Hua**, ZHANG Huan-Hao . MHD Control of Oblique Detonation Waves[J]. Chin. Phys. Lett., 2011, 28(1): 084707
[10] SHAO Ye-Tao, WANG Jian-Ping. Change in Continuous Detonation Wave Propagation Mode from Rotating Detonation to Standing Detonation[J]. Chin. Phys. Lett., 2010, 27(3): 084707
[11] WANG Gang, ZHANG De-Liang, LIU Kai-Xin,. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections[J]. Chin. Phys. Lett., 2010, 27(2): 084707
[12] WANG Chun, JIANG Zong-Lin, GAO Yun-Liang. Half-Cell Law of Regular Cellular Detonations[J]. Chin. Phys. Lett., 2008, 25(10): 084707
[13] HAN Gui-Lai, JIANG Zong-Lin, WANG Chun, ZHANG Fan. Cellular Cell Bifurcation of Cylindrical Detonations[J]. Chin. Phys. Lett., 2008, 25(6): 084707
[14] WANG Gang, ZHANG De-Liang, LIU Kai-Xin. An Improved CE/SE Scheme and Its Application to Detonation Propagation[J]. Chin. Phys. Lett., 2007, 24(12): 084707
Viewed
Full text


Abstract