Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 077305    DOI: 10.1088/0256-307X/29/7/077305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Controllable Negative Differential Resistance Behavior of an Azobenzene Molecular Device Induced by Different Molecule-Electrode Distances
FAN Zhi-Qiang**, ZHANG Zhen-Hua**, QIU Ming, DENG Xiao-Qing, TANG Gui-Ping
School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004
Cite this article:   
FAN Zhi-Qiang, ZHANG Zhen-Hua, QIU Ming et al  2012 Chin. Phys. Lett. 29 077305
Download: PDF(649KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report the ab initio calculations of transport behaviors of an azobenzene molecular device which is similar to the experimental configurations. The calculated results show that the transport behaviors of the device are sensitive to the molecule-electrode distance and the currents will drop rapidly when the molecule-electrode distance changes from 1.7 Åto 2.0 Å. More interestingly, the negative differential resistance behavior can be found in our device. Nevertheless, it is not the inherent property of an azobenzene molecular device but an effect of the molecule-electrode distance. Detailed analyses of the molecular projected self-consistent Hamiltonian states and the transmission spectra of the system reveal the physical mechanism of these behaviors.

Received: 23 February 2012      Published: 29 July 2012
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  85.65.+h (Molecular electronic devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/077305       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/077305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Zhi-Qiang
ZHANG Zhen-Hua
QIU Ming
DENG Xiao-Qing
TANG Gui-Ping
[1] Ghosh S, Halimun H, Mahapatro A K, Choi J, Lodha S and Janes D 2005 Appl. Phys. Lett. 87 233509
[2] Tsutsui M, Teramae Y, Kurokawa S and Sakai A 2006 Appl. Phys. Lett. 89 163111
[3] Andzane J, Petkov N, Livshits A I, Boland J J, Holmes J D and Erts D 2009 Nano Lett. 9 1824
[4] Dresselhaus M S, Jorio A, Hofmann M, Dresselhaus G and Saito R 2010 Nano Lett. 10 751
[5] Liu Z H, Bol A A and Haensch W 2011 Nano Lett. 11 523
[6] Li Z Y, Qian H Y, Wu J, Gu B L and Duan W H 2008 Phys. Rev. Lett. 100 206802
[7] Fan Z Q, Chen K Q, Wan Q, Zou B S, Duan W H and Shuai Z 2008 Appl. Phys. Lett. 92 263304
[8] Zhao P, Zhang Z, Wang P J, Zhang H K, Ren M J and Li F 2010 Chin. Phys. Lett. 27 027304
[9] Xiao C J, Liu D S and Zhang Y T 2011 Chin. Phys. Lett. 28 093102
[10] An Y P and Yang Z Q 2011 Appl. Phys. Lett. 99 192102
[11] Zhang C, Du M H, Cheng H P, Zhang X G, Roitberg A E and Krause J L 2004 Phys. Rev. Lett. 92 158301
[12] Zhang C, He Y, Cheng H P, Xue Y Q, Ratner M A, Zhang X G and Krstic P 2006 Phys. Rev. B 73 125445
[13] Ah Qune L F N, Akiyama H, Nagahiro T, Tamada K and Wee A T S 2008 Appl. Phys. Lett. 93 083109
[14] Mativetsky J M, Pace G, Elbing M, Rampi M A, Mayor M and Samorì P 2008 J. Am. Chem. Soc. 130 9192
[15] Angelos S, Yang Y W, Khashab N M, Stoddart J F and Zink J I 2009 J. Am. Chem. Soc. 131 11344
[16] Fan Z Q and Chen K Q 2010 Appl. Phys. Lett. 96 053509
[17] Qiu M, Zhang Z H, Deng X Q and Pan J B 2010 Appl. Phys. Lett. 97 242109
[18] Deng X Q, Zhang Z H, Zhou J C, Qiu M and Tang G P 2010 J. Chem. Phys. 132 124107
[19] Dai Z X, Zheng X H, Shi X Q and Zeng Z 2005 Phys. Rev. B 72 205408
[20] Wang S C, Lu W C, Zhao Q Z and Bernholc J 2006 Phys. Rev. B 74 195430
[21] Ji G M, Zhai Y X, Fang C F, Xu Y Q, Cui B and Liu D S 2011 Phys. Lett. A 375 1602
[22] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[23] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[24] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and S ánchez-Portal D 2002 J. Phys. : Condens. Matter 14 2745
[25] Li Z Y, Qian H Y, Wu J, Gu P L and Duan W H 2008 Phys. Rev. Lett. 100 206802
[26] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[27] Kaun C C, Larade B and Guo H 2003 Phys. Rev. B 67 121411(R)
[28] Skorodumova N Y, Simak S I, Kochetov A E and Johansson B 2007 Phys. Rev. B 75 235440
[29] Kula M, Jiang J, Lu W and Luo Y 2006 J. Chem. Phys. 125 194703
[30] Geng H, Hu Y B, Shuai Z G, Xia K, Gao H J and Chen K Q 2007 J. Phys. Chem. C 111 19098
[31] Li X F, Chen K Q, Wang L L, Long M Q, Zou B S and Shuai Z 2007 Appl. Phys. Lett. 91 133511
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 077305
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 077305
[3] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 077305
[4] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 077305
[5] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 077305
[6] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 077305
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 077305
[8] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 077305
[9] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 077305
[10] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 077305
[11] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 077305
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 077305
[13] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 077305
[14] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 077305
[15] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 077305
Viewed
Full text


Abstract