Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 074216    DOI: 10.1088/0256-307X/29/7/074216
Nonlocal Imaging by Conditional Averaging of Random Reference Measurements
LUO Kai-Hong1, HUANG Bo-Qiang1, ZHENG Wei-Mou2, WU Ling-An1**
1Laboratory of Optical Physics, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190
2Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
Download: PDF(767KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

We report the nonlocal imaging of an object by conditional averaging of the random exposure frames of a reference detector, which only sees the freely propagating field from a thermal light source. A bucket detector, synchronized with the reference detector, records the intensity fluctuations of an identical beam passing through the object mask. These fluctuations are sorted according to their values relative to the mean, then the reference data in the corresponding time-bins for a given fluctuation range are averaged, to produce either positive or negative images. Since no correlation calculations are involved, this correspondence imaging technique challenges our former interpretations of "ghost" imaging. Compared with conventional correlation imaging or compressed sensing schemes, both the number of exposures and computation time are greatly reduced, while the visibility is much improved. A simple statistical model is presented to explain the phenomenon.

Received: 20 June 2012      Published: 29 July 2012
PACS:  42.50.Ar  
  42.30.Va (Image forming and processing)  
  42.50.St (Nonclassical interferometry, subwavelength lithography)  
Cite this article:   
LUO Kai-Hong, HUANG Bo-Qiang, ZHENG Wei-Mou et al  2012 Chin. Phys. Lett. 29 074216
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
LUO Kai-Hong
HUANG Bo-Qiang
WU Ling-An

[1] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[2] Cheng J and Han S S 2004 Phys. Rev. Lett. 92 093903
[3] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
Bennink R S, Bentley S J, Boyd R W and Howell J C 2004 Phys. Rev. Lett. 92 033601
[4] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[5] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A 2005 Phys. Rev. Lett. 94 183602
[6] Cai Y J and Zhu S Y 2005 Phys. Rev. E 71 056607
[7] Cao D Z, Xiong J and Wang K G 2005 Phys. Rev. A 71 013801
[8] Valencia A, Scarcelli G, D Angelo M and Shih Y 2005 Phys. Rev. Lett. 94 063601
[9] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
[10] Scarcelli G, Berardi V and Shih Y H 2006 Appl. Phys. Lett. 88 061106
[11] Basano L and Ottonello P 2006 Appl. Phys. Lett. 89 091109
[12] Meyers R, Deacon K S and Shih Y H 2008 Phys. Rev. A 77 041801(R)
[13] Liu H L and Han S S 2008 Opt. Lett. 33 824
[14] Ferri F, Magatti D, Sala V G and Gatti A 2008 Appl. Phys. Lett. 92 261109
[15] Chen X H, Liu Q, Luo K H and Wu L A 2009 Opt. Lett. 34 695
[16] Shapiro J H 2008 Phys. Rev. A 78 061802(R)
Erkmen B I and Shapiro J H 2010 Adv. Opt. Photon. 2 405
[17] Bromberg Y, Katz O and Silberberg Y 2009 Phys. Rev. A 79 053840
[18] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[19] Shih Y 2007 IEEE J. Sel. Top. Quantum Electron. 13 1016
[20] Glauber R J 1963 Phys. Rev. 131 2766
[21] Wu L A and Luo K H 2011 AIP Conf. Proc. 1384 223
[22] Goodman J W 2000 Statistical Optics (New York: Wiley Classic Library)
[23] Basano L and Ottonello P 2007 Appl. Opt. 46 6291
[24] Brida G, Chekhova M V, Fornaro G A, Genovese M, Lopaeva E D and Ruo Berchera I 2011 Phys. Rev. A 83 063807

Full text