Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 074204    DOI: 10.1088/0256-307X/29/7/074204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Numerical Study of Plasmonic Modes in Hexagonally Arranged Metal Nanowire Array
YAN Hao-Zhe, PENG Jing-Gang, LI Jin-Yan, YANG Lü-Yun**
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
YAN Hao-Zhe, PENG Jing-Gang, LI Jin-Yan et al  2012 Chin. Phys. Lett. 29 074204
Download: PDF(814KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A plasmonic waveguide containing hexagonally arranged parallel metallic nanowires with hexagonal cross sections embedded in a silica fiber is proposed and discussed. According to simulations of surface plasmon polariton eigenmodes at varying geometrical transverse parameters, we obtain comprehensive mode characteristics, including field mode distribution, effective refractive index, propagation length, and lateral mode radius, thus allowing us to investigate the precise trade-off between propagation length and confinement, which is very important in designing plasmonic waveguides of different applications. This waveguide is also proved to be robust against fabrication imperfections, which makes its manufacture and practical applicability feasible.
Received: 22 February 2012      Published: 29 July 2012
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/074204       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/074204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Hao-Zhe
PENG Jing-Gang
LI Jin-Yan
YANG Lü-Yun
[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 6950
[2] Lu Z X, Yu L, Liu B C, Zhang K and Song G 2011 Chin. Phys. Lett. 28 087801
[3] Lee H W, Schmidt M A, Tyagi H K, Sempere L P and Russell P S J 2008 Appl. Phys. Lett. 93 11
[4] Zhang Z X, Hu M L, Chan K T and Wang C Y 2010 Opt. Lett. 35 23
[5] Ordal M A, Bell R J, Alexander Jr R W, Long L L and Querry M R 1985 Appl. Opt. 24 24
[6] Fleming J W 1984 Appl. Opt. 23 24
[7] Prade B, Vinet J Y and Mysyrowicz A 1991 Phys. Rev. B 44 24
[8] Jung J, S ?ndergaard T and Bozhevolnyi S I 2007 Phys. Rev. B 76 3
[9] Feigenbaum E and Orenstein M 2007 J. Lightw. Technol. 25 9
[10] Davoyan A R, Shadrivov I V, Bozhevolnyi S I and Kivshar Y S 2010 J. NANOPHOTONICS 4 043509
[11] Manjavacas A and García De Abajo F J 2008 Nano Lett. 9 4
[12] Burke J J, Stegeman G I and Tamir T 1986 Phys. Rev. B 33 8
[13] Ginzburg P, Arbel D and Orenstein M 2006 Opt. Lett. 31 22
[14] Berini P 2000 Phys. Rev. B 61 15
Related articles from Frontiers Journals
[1] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 074204
[2] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 074204
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 074204
[4] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 074204
[5] Yue-Lan Lu, Fei-Ru Wang, Chi Zhang, Ji-Wen Yin, Yu Huang, Wei-Min Sun, Yong-Jun Liu. Magneto and Electro-Optic Intensity Modulator Based on Liquid Crystal and Magnetic Fluid Filled Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2018, 35(10): 074204
[6] Xiang-Shu Liu, Yang Ren, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Nonlinear Excitation and State Transition of Multi-Peak Solitons[J]. Chin. Phys. Lett., 2018, 35(7): 074204
[7] Xiang-Shu Liu, Li-Chen Zhao, Liang Duan, Peng Gao, Zhan-Ying Yang, Wen-Li Yang. Interaction between Breathers and Rogue Waves in a Nonlinear Optical Fiber[J]. Chin. Phys. Lett., 2018, 35(2): 074204
[8] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 074204
[9] Hui-Feng Wei, Sheng-Ping Chen, Jing Hou, Kang-Kang Chen, Jin-Yan Li. A Double-Cladding Seven-Core Photonic Crystal Fiber for Hundred-Watts-Level All-Fiber-Integrated Supercontinuum Generation[J]. Chin. Phys. Lett., 2016, 33(06): 074204
[10] Liang Qiao, Tao Wang, Zhong-Lei Mei, Xi-Ling Li, Wen-Bo Sui, Li-Yun Tang, Fa-Shen Li. Analyzing Bandwidth on the Microwave Absorber by the Interface Reflection Model[J]. Chin. Phys. Lett., 2016, 33(02): 074204
[11] Liang Duan, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Optical Rogue Wave Excitation and Modulation on a Bright Soliton Background[J]. Chin. Phys. Lett., 2016, 33(01): 074204
[12] LIU Lan-Lan, WU Chong-Qing, SHANG Chao, WANG Jian, GAO Kai-Qiang. Quaternion Approach to Solve Coupled Nonlinear Schr?dinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems[J]. Chin. Phys. Lett., 2015, 32(08): 074204
[13] LI Lu, PANG Li-Hui, ZHOU Zhi-Guang, ZHANG Ai-Dong, HE Jian-Li, SI Jin-Hai, LIN Ao-Xiang. Design of a Solid-Core Large-Mode-Area Bragg Fiber[J]. Chin. Phys. Lett., 2015, 32(5): 074204
[14] HU Xue-Juan, GUO Chun-Yu, RUAN Shuang-Chen. Wavelength-Tunable Rectangular Pulse Dissipative Soliton Operation of an Erbium-Doped Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2014, 31(04): 074204
[15] YANG Jin-Hui, GUO Chun-Yu, RUAN Shuang-Chen, OUYANG De-Qin, LIN Huai-Qin, WU Yi-Ming. High-Energy Rectangular Pulse Dissipative Soliton Generation in a Long-Cavity Sigma-Shaped Configuration Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2014, 31(2): 074204
Viewed
Full text


Abstract