Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 070703    DOI: 10.1088/0256-307X/29/7/070703
GENERAL |
Lateral Resolution and Signal to Noise Ratio in Electrostatic Force Detection Based on Scanning Probe Microscopy
ZHANG Dong-Dong1,2, WANG Xiao-Wei1, WANG Rui1,2, WANG Sheng-Nan1,3, CHENG Zhi-Hai1, QIU Xiao-Hui1**
1National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190
2Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871
3Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
ZHANG Dong-Dong, WANG Xiao-Wei, WANG Rui et al  2012 Chin. Phys. Lett. 29 070703
Download: PDF(810KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The lateral resolution (LR) and signal-to-noise ratio (SNR) are the essential factors in the applications of scanning probe microscopy in quantitative measurement of surface charge distribution, potential profile, and dielectric properties. We use a model system to comprise Au nanoparticles (NPs) embedded in a polystyrene (PS) matrix to study the effects of various experimental parameters, such as modulation bias voltage, tip-sample distance, and actual tip shape, on the electrostatic interactions between the tips and samples. The results show that LR and SNR decrease when the tip-sample distance increases, while SNR increases with tip modulation voltage. LR is less sensitive to tip modulation voltage, but shows complex dependence on the sample geometric structure. In combination with a numerical simulation based on the integral capacitance model, the electrostatic force interaction between tip and sample was quantitatively analyzed.
Received: 03 May 2012      Published: 29 July 2012
PACS:  07.79.-v (Scanning probe microscopes and components)  
  07.79.Lh (Atomic force microscopes)  
  68.37.Ps (Atomic force microscopy (AFM))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/070703       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/070703
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Dong-Dong
WANG Xiao-Wei
WANG Rui
WANG Sheng-Nan
CHENG Zhi-Hai
QIU Xiao-Hui
[1] Wang R, Wang S N, Zhang D D, Li Z J, Fang Y and Qiu X H 2011 ACS Nano. 5 408
[2] Barrett R C and Quate C F 1992 Ultramicroscopy 42 262
[3] Lu W, Wang D and Chen L W 2007 Nano Lett. 7 2729
[4] Jiang Y P, Qi Q, Wang R, Zhang J, Xue Q K, Wang C, Jiang C and Qiu X H 2011 ACS Nano. 5 6195
[5] Cohen H, Sapir T, Borovok N, Molotsky T, Felice R D, Kotlyar A B and Porath D 2007 Nano Lett. 7 981
[6] MacCuspie R I, Nuraje N, Lee S Y, Runge A and Matsui H 2008 J. Am. Chem. Soc. 130 887
[7] Stern J E, Terris B D, Mamin H J and Rugar D 1988 Appl. Phys. Lett. 53 2717
[8] Nonnenmacher M, OBoyle M P and Wickramasinghe H K 1991 Appl. Phys. Lett. 58 2921
[9] Liam S C, Obadiah G R and David S G 2009 Adv. Mater. 21 19
[10] Belaidi S, Lebon F, Girard P, Leveque G and Pagano S 1998 Appl. Phys. A 66 239
[11] Shen Y, Lee M, Lee W, Barnett D M, Pinsky P M and Prinz F B 2008 Nanotechnology 19 035710
[12] Gomez-Monivas S, Froufe L S, Carminati R, Greffet J J and S áenz J J 2001 Nanotechnology 12 496
[13] Riedel C, Alegría A, Schwartz G A, Colmenero J and S áenz J J 2011 Nanotechnology 22 285705
[14] Glatzel T, Sadewasser S and Lux-Steiner M C 2003 Appl. Surf. Sci. 210 84
[15] Ziegler D and Stemmer A 2011 Nanotechnology 22 075501
[16] Gramse G, Casuso I, Toset J, Fumagalli L and Gomila G 2009 Nanotechnology 20 395702
[17] Riedel C, Sweeney R, Israeloff N E, Arinero R, Schwartz G A, Alegría A, Tordjeman P and Colmenero J 2010 Appl. Phys. Lett. 96 213110
[18] Riedel C, Arinero R, Tordjeman P, Lévêque G, Schwartz G A, Alegria A and Colmenero J 2010 Phys. Rev. E 81 010801
[19] Cherniavskaya O, Chen L W, Weng V, Yuditsky L and Brus L E 2003 J. Phys. Chem. B 107 1525
[20] Albrecht T R, Grutter P, Horne D and Rugar D 1991 J. Appl. Phys. 69 668
[21] Qiu X H, Qi G C, Yang Y L and Wang C 2008 J. Solid State Chem. 181 1670
[22] Terris B D, Stern J E, Rugar D and Mamin H J 1989 Phys. Rev. Lett. 63 2669
[23] Pan L H, Sullivan T E, Peridier V J, Cutler P H and Miskovsky N M 1994 Appl. Phys. Lett. 65 2151
[24] He J, Cutler P H, Miskovsky N M and Feuchtwang T E 1991 Surf. Sci. 246 348
[25] Yokoyama H, Inoue T and Itoh J 1994 Appl. Phys. Lett. 65 3143
[26] Martin Y, Abraham D W and Wrickramasinghe H K 1988 Appl. Phys. Lett. 52 1103
[27] Dai H, Wong E W and Lieber Ch M 1996 Science 272 523
[28] Hao H W, Baro A M and Saenz J J1991 J. Vac. Sci. Technol. B 9 1323
[29] Ziegler D and Stemmer A 2011 Nanotechnology 22 075501
Related articles from Frontiers Journals
[1] Ming Lu, Didi Luo, Feng Pan, Chunlong Li, Shichun Huang, Ziqin Yang, Andong Wu, Qingwei Chu, Tongtong Zhu, Shuai Wu, Teng Tan, and Hao Guo. Development and Performance of the First Nb$_3$Sn Thin-Film Cavity via Bronze Process[J]. Chin. Phys. Lett., 2022, 39(11): 070703
[2] Yin-Ping Pan, Yue Wang, Ruo-Ting Yang, Yan Tang, Xiao-Yu Liu, Hua Jin, Lin-Xian Ma, Yi-Shi Lin, Zhen Wang, Jie Ren, Yi-Hua Wang, and Lei Chen. Characterization of Scanning SQUID Probes Based on 3D Nano-Bridge Junctions in Magnetic Field[J]. Chin. Phys. Lett., 2020, 37(8): 070703
[3] WANG Xian-Ying, XIE Shu-Fan, CHEN Xiao-Dong, LIU Yang-Yang. Direct Piezoelectric Potential Measurement of ZnO Nanowires Using a Kelvin Probe Force Microscope[J]. Chin. Phys. Lett., 2013, 30(4): 070703
[4] HUANG Hai-Chao, WANG Hai-Bo, YAN Dong-Hang. Heterojunction Effect in Weak Epitaxy Growth Thin Films Investigated by Kelvin Probe Force Microscopy[J]. Chin. Phys. Lett., 2010, 27(8): 070703
[5] WANG Long-Hai, DAI Ying, DENG Zhao. Etch Damage Evaluation in Integrated Ferroelectric Capacitor Side Wall by Piezoresponse Force Microscopy[J]. Chin. Phys. Lett., 2008, 25(9): 070703
[6] ZENG Hua-Rong, YU Han-Feng, CHU Rui-Qing, LI Guo-Rong, YIN Qing-Rui. Ferroelectric Domain Imaging Mechanism in High-Vacuum Scanning Force Microscopy[J]. Chin. Phys. Lett., 2005, 22(1): 070703
Viewed
Full text


Abstract