Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 067401    DOI: 10.1088/0256-307X/29/6/067401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of Cleaving Temperature on the Surface and Bulk Fermi Surface of Sr2RuO4 Investigated by High Resolution Angle-Resolved Photoemission
LIU Shan-Yu1, ZHANG Wen-Tao1, WENG Hong-Ming1, ZHAO Lin1, LIU Hai-Yun1, JIA Xiao-Wen1, LIU Guo-Dong1, DONG Xiao-Li1, ZHANG Jun1, MAO Zhi-Qiang2, CHEN Chuang-Tian3, XU Zu-Yan3, DAI Xi1, FANG Zhong1, ZHOU Xing-Jiang1**
1National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
3Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
LIU Shan-Yu, ZHANG Wen-Tao, WENG Hong-Ming et al  2012 Chin. Phys. Lett. 29 067401
Download: PDF(743KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High resolution angle-resolved photoemission measurements are carried out to systematically investigate the effect of cleaving temperature on the electronic structures and Fermi surfaces of Sr2RuO4. Unlike previous reports, which found that a high cleaving temperature can suppress the surface Fermi surface, we find that the surface Fermi surface remains obvious and strong in Sr2RuO4 cleaved at high temperature, even at room temperature. This indicates that cleaving temperature is not a key effective factor in suppressing surface bands. On the other hand, the bulk bands can be enhanced in an aged surface of Sr2RuO4 that has been cleaved and held for a long time. We have also carried out laser ARPES measurements on Sr2RuO4 by using a vacuum ultra-violet laser (photon energy at 6.994 eV) and found an obvious enhancement of bulk bands even for samples cleaved at low temperature. This information is important for realizing an effective approach to manipulating and detecting the surface and bulk electronic structure of Sr2RuO4. In particular, the enhancement of bulk sensitivity, along with the super-high instrumental resolution of VUV laser ARPES, will be advantageous in investigating fine electronic structure and superconducting properties of Sr2RuO4 in the future.
Keywords: 74.70.Pq      71.20.-b      73.20.At     
Received: 28 May 2012      Published: 31 May 2012
PACS:  74.70.Pq (Ruthenates)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.20.At (Surface states, band structure, electron density of states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/067401       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/067401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Shan-Yu
ZHANG Wen-Tao
WENG Hong-Ming
ZHAO Lin
LIU Hai-Yun
JIA Xiao-Wen
LIU Guo-Dong
DONG Xiao-Li
ZHANG Jun
MAO Zhi-Qiang
CHEN Chuang-Tian
XU Zu-Yan
DAI Xi
FANG Zhong
ZHOU Xing-Jiang
[1] Maeno Y, Rice T M and Sigrist M 2001 Phys. Today 54 42
[2] Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657
[3] Maeno Y, Kittaka S, Nomura T, Yonezawa S and Ishida K 2012 J. Phys. Soc. Jpn. 81 011009
[4] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G and Lichtenberg F 1994 Nature 372 532
[5] Mao Z Q, Maeno Y and Fukazawa H 2000 Mater. Res. Bull. 35 1813
[6] Bednorz J G and Muller K A 1986 Z. Phys. B 64 189
[7] Rice T M and Sigrist M 1995 J. Phys. Condens. Matter. 7 L643
[8] Honerkamp C and Rice T M 2003 J. Low. Temp. Phys. 131 159
[9] Luke G M, Fudamoto Y, Kojima K M, Larkin M I, Merrin J, Nachumi B, Uemura Y J, Maeno Y, Mao Z Q, Mori Y, Nakamura N and Sigrist M 1998 Nature 394 558
[10] Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y and Maeno Y 1998 Nature 396 658
[11] Nelson K D, Mao Z Q, Maeno Y and Liu Y 2004 Science 306 1151
[12] Xia J, Maeno Y, Beyersdorf P T, Fejer M M and Kapitulnik A 2006 Phys. Rev. Lett. 97 167002
[13] Kidwingira F, Strand J D, Van Harlingen D J and Maeno Y 2006 Science 314 1267
[14] Bergemann C, Mackenzie A P, Julian S R, Forsythe D and Ohmichi F 2003 Adv. Phys. 52 639
[15] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[16] Sarma S D, Nayak C and Tewari S 2006 Phys. Rev. B 73 220502(R)
[17] Oguchi T 1995 Phys. Rev. B 51 1385
[18] Singh D J 1995 Phys. Rev. B 52 1358
[19] Mazin I I and Singh D J 1997 Phys. Rev. Lett. 79 733
[20] Mazin I I and Singh D J 1999 Phys. Rev. Lett. 82 4324
[21] Mackenzie A P, Julian S R, Diver A J, McMullan G J, Ray M P, Lonzarich G G, Maeno Y, Nishizaki S and Fujita T 1996 Phys. Rev. Lett. 76 3786
[22] Bergemann C, Julian S R, Mackenzie A P, NishiZaki S and Maeno Y 2000 Phys. Rev. Lett. 84 2662
[23] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[24] Lu D H, Schmidt M, Cummins T R and Schuppler S 1996 Phys. Rev. Lett. 76 4845
[25] Yokoya T, Chainani A, Takahashi T, Katayama Y H, Kasai M and Tokura Y 1996 Phys. Rev. Lett. 76 3009
Yokoya T, Chainani A, Takahashi T, Ding H, Campuzano J C, Yoshida H K, Kasai M and Tokura Y 1996 Phys. Rev. B 54 13311
[26] Puchkov A W, Shen Z X, Kimura T and Tokura Y 1998 Phys. Rev. B 58 R13322
[27] Mackenzie A P, Julian S R, Lonzarich G G, Maeno Y and Fujita T 1997 Phys. Rev. Lett. 78 2271
[28] Matzdorf R, Fang Z, Ismail, Zhang J, Kimura T, Tokura Y, Terakura K and Plummer E W 2000 Science 289 746
[29] Damascelli A, Lu D H, Shen K M, Armitage N P, Ronning F, Feng D L, Kim C and Shen Z X 2000 Phys. Rev. Lett. 85 5194
[30] Shen K M, Damascelli A, Lu D H, Armitage N P, Ronning F, Feng D L, Kim C, Shen Z X, Singh D J, Mazin I I, Nakatsuji S, Mao Z Q, Maeno Y, Kimura T and Tokura Y 2001 Phys. Rev. B 64 180502(R).
[31] Kashiwaya S, Kashiwaya H, Kambara H, Furuta T, Yaguchi H, Tanaka Y and Maeno Y 2011 Phys. Rev. Lett. 107 077003
[32] Iwasawa H, Aiura Y, Saitoh T, Hase I, Ikeda S I, Yoshida Y, Bando H, Higashiguchi M, Miura Y, Cui X Y, Shimada K, Namatame H and Taniguchi M 2005 Phys. Rev. B 72 104514
[33] Ingle N J C, Shen K M, Baumberger F, Meevasana W, Lu D H, Shen Z X, Damascelli A, Nakatsuji S, Mao Z Q, Maeno Y, Kimura T and Tokura Y 2005 Phys. Rev. B 72 205114
[34] Kidd T E, Valla T, Fedorov A V, Johnson P D, Cava R J and Haas M K 2005 Phys. Rev. Lett. 94 107003
[35] Pennec Y, Ingle N J C, Elfimov I S, Varene E, Maeno Y, Damascelli A and Barth J V 2008 Phys. Rev. Lett. 101 216103
[36] Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Wang X Y, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum. 79 023105
[37] Seah M P 1979 Surf. Interface Analysis 1 2
Related articles from Frontiers Journals
[1] HUANG Xiao-Ming, WU Chen-Fei, LU Hai, XU Qing-Yu, ZHANG Rong, ZHENG You-Dou. Impact of Interfacial Trap Density of States on the Stability of Amorphous InGaZnO-Based Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(6): 067401
[2] GAO Jun-Ning,JIE Wan-Qi**,YUAN Yan-Yan,ZHA Gang-Qiang,XU Ling-Yan,WU Heng,WANG Ya-Bin,YU Hui,ZHU Jun-Fa. In-Situ SRPES Study on the Band Alignment of (0001)CdS/CdTe Heterojunction[J]. Chin. Phys. Lett., 2012, 29(5): 067401
[3] MA Peng,JIN Zhi**,GUO Jian-Nan,PAN Hong-Liang,LIU Xin-Yu,YE Tian-Chun,WANG Hong,WANG Guan-Zhong. Chemical Vapour Deposition Graphene Radio-Frequency Field-Effect Transistors[J]. Chin. Phys. Lett., 2012, 29(5): 067401
[4] ZHOU Tie-Ge,LIU Zhi-Qiang**,ZUO Xu. First-Principles Study of Doped Half-Metallic Spinels: Cu0.5Zn0.5Cr2S4, Cu0.5Cd0.5Cr2S4, Li0.5Zn0.5Cr2O4 and Li0.5Zn0.5Cr2S4[J]. Chin. Phys. Lett., 2012, 29(4): 067401
[5] LU Yong-Fang, SHI Li-Qun**, DING Wei, LONG Xing-Gui. First-Principles Study of Hydrogen Impact on the Formation and Migration of Helium Interstitial Defects in hcp Titanium[J]. Chin. Phys. Lett., 2012, 29(1): 067401
[6] SUN Hong-Guo**, ZHOU Zhong-Xiang, YUAN Cheng-Xun, YANG Wen-Long, WANG He. Structural, Electronic and Optical Properties of KTa0.5Nb0.5O3 Surface: A First-Principles Study[J]. Chin. Phys. Lett., 2012, 29(1): 067401
[7] LI Deng-Feng **, GUO Zhi-Cheng, LI Bo-Lin, DONG Hui-Ning, XIAO Hai-Yan . Structural and Electronic Properties of Sulfur-Passivated InAs(001) ( 2×6 ) Surface[J]. Chin. Phys. Lett., 2011, 28(8): 067401
[8] CHEN Cong, NING Ting-Yin, WANG Can**, ZHOU Yue-Liang, ZHANG Dong-Xiang, WANG Pei, MING Hai, YANG Guo-Zhen . Rectifying Characteristics and Transport Behavior in a Schottky Junction of CaCu 3Ti4O12 and Pt[J]. Chin. Phys. Lett., 2011, 28(8): 067401
[9] GONG Sai, WANG Yue-Hua**, ZHAO Xin-Yin, ZHANG Min, ZHAO Na, DUAN Yi-Feng . Structural, Electronic and Optical Properties of BiAl xGa1−xO3 (x=0, 0.25, 0.5 and 0.75)[J]. Chin. Phys. Lett., 2011, 28(8): 067401
[10] ZHAO Na, WANG Yue-Hua**, ZHAO Xin-Yin, ZHANG Min, GONG Sai . Electronic Structure and Optical Properties of SrBi2A2O9(A=Nb,Ta)[J]. Chin. Phys. Lett., 2011, 28(7): 067401
[11] WANG Jin, WANG Hui, ZHAO Wang, MA Yan, LI Wan-Cheng, XIA Xiao-Chuan, SHI Zhi-Feng, ZHAO Long, ZHANG Bao-Lin, DONG Xin**, DU Guo-Tong . Crystalline, Optical and Electrical Properties of NiZnO Thin Films Fabricated by MOCVD[J]. Chin. Phys. Lett., 2011, 28(7): 067401
[12] ZHAO Xin-Yin, WANG Yue-Hua**, ZHANG Min, ZHAO Na, GONG Sai, CHEN Qiong . First-Principles Calculations of the Structural, Electronic and Optical Properties of BaZrxTi1−xO3 (x=0, 0.25, 0.5, 0.75)[J]. Chin. Phys. Lett., 2011, 28(6): 067401
[13] CHEN Yi-Xin**, SHEN Guang-Di, ZHU Yan-Xu, GUO Wei-Ling, LI Jian-Jun . Efficiency-enhanced AlGaInP Light-Emitting Diodes with Thin Window Layers and Coupled Distributed Bragg Reflectors[J]. Chin. Phys. Lett., 2011, 28(6): 067401
[14] SHAO Xi** . Prediction of a Low-Dense BC2N Phase[J]. Chin. Phys. Lett., 2011, 28(5): 067401
[15] JIA Xiao-Wen, LIU Yan, YU Li, HE Jun-Feng, ZHAO Lin, ZHANG Wen-Tao, LIU Hai-Yun, LIU Guo-Dong, HE Shao-Long, ZHANG Jun, LU Wei, WU Yue, DONG Xiao-Li, SUN Li-Ling, WANG Gui-Ling, ZHU Yong, WANG Xiao-Yang, PENG Qin-Jun, WANG Zhi-Min, ZHANG Shen-Jin, YANG Feng, XU Zu-Yan, CHEN Chuang-Tian, ZHOU Xing-Jiang** . Growth, Characterization and Fermi Surface of Heavy Fermion CeCoIn5 Superconductor[J]. Chin. Phys. Lett., 2011, 28(5): 067401
Viewed
Full text


Abstract