Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 064706    DOI: 10.1088/0256-307X/29/6/064706
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media
YUN Mei-Juan1,2**, ZHENG Wei3
1Key Laboratory of Systems Science in Metallurgical Process of Hubei Province, Wuhan University of Science and Technology, Wuhan 430081
2State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500
3State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077
Cite this article:   
YUN Mei-Juan, ZHENG Wei 2012 Chin. Phys. Lett. 29 064706
Download: PDF(436KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Robertson–Stiff (RS) fluid is the representative fluid which may be reduced to Bingham, power-law and Newtonian fluids under appropriate conditions. We present fractal models for the flow rate, velocity, starting pressure gradient and effective permeability for RS fluids in porous media based on the fractal characteristics of porous media and capillary models. The proposed models are expressed as functions of the fractal dimensions, porosity, maximum pore size and the representative length of the porous media. Every parameter in the proposed expressions has clear physical meaning, and the proposed models relate the flow characteristics of the RS fluids to the structural parameters of the porous media. The analytical expressions reveal the physical principles of RS fluid flow in porous media.
Received: 16 February 2012      Published: 31 May 2012
PACS:  47.55.Mh  
  47.15.-x (Laminar flows)  
  05.45.Df (Fractals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/064706       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/064706
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUN Mei-Juan
ZHENG Wei
[1] Robertson R E and Stiff H A 1976 SPE J. 16 31
[2] Cai J C, Yu B M, Zou M Q and Luo L 2010 Energy Fuels 24 1860
[3] Cai J C, Yu B M, Zou M Q and Xu P 2010 Chem. Eng. Sci. 65 5178
[4] Yun M J, Yu B M, Xu P and Cai J C 2008 Chin. Phys. Lett. 25 616
[5] Katz A J and Thompson A H 1985 Phys. Rev. Lett. 54 1325
[6] Yu B M and Cheng P 2002 Int. J. Heat Mass Transfer 45 2983
[7] Yu B M, Lee L J and Cao H Q 2002 Polym Compos. 22 201
[8] Yu B M 2005 Chin. Phys. Lett. 22 158
[9] Wu J S and Yu B M 2007 Int. J. Heat Mass Transfer 50 3925
[10] Xu P and Yu B M 2008 Adv. Water Resources 31 74
[11] Zhang B, Yu B M, Wang H X and Yun M J 2006 Fractals 14 171
[12] Yun M J, Yu B M and Cai J C 2008 Int. J. Heat Mass Transfer 51 1402
[13] Yu B M and Li J H 2004 Chin. Phys. Lett. 21 1569
[14] Govier G W and Aziz K 1972 The Flow of Complex Mixtures in Pipes (New York: Van Nosrand Reinhild Company)
[15] Kong X Y, Chen F L and Chen G Q 1999 J. Chin. University Sci. Technol. 29 141
[16] Tsakiroglou C D 2002 J. Non-Newtonian Fluid Mech. 105 79
[17] Wang H G and Su Y N 1998 Appl. Math. Mech. 19 1007
Related articles from Frontiers Journals
[1] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 064706
[2] A. M. Salem. Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media[J]. Chin. Phys. Lett., 2010, 27(6): 064706
[3] LI Jian-Hua, YU Bo-Ming, ZOU Ming-Qing. A Model for Fractal Dimension of Rough Surfaces[J]. Chin. Phys. Lett., 2009, 26(11): 064706
[4] ZHANG Ji-Cheng, SONG Kao-Ping, LIU Li, YANG Er-Long. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis[J]. Chin. Phys. Lett., 2008, 25(5): 064706
[5] KOU Jian-Long, LU Hang-Jun, WU Feng-Min, XU You-Sheng. Sprout Branching of Tumour Capillary Network Growth: Fractal Dimension and Multifractal Structure[J]. Chin. Phys. Lett., 2008, 25(5): 064706
[6] ZHAO Si-Cheng, LIU Rong, LIU Qiu-Sheng. Thermocapillary Convection in an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2008, 25(2): 064706
[7] YUN Mei-Juan, YU Bo-Ming, Xu Peng, CAI Jian-Chao. Fractal Analysis of Power-Law Fluid in a Single Capillary[J]. Chin. Phys. Lett., 2008, 25(2): 064706
[8] WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel[J]. Chin. Phys. Lett., 2007, 24(10): 064706
[9] SONG Fu-Quan, JIANG Ren-Jie, BIAN Shu-Li. Measurement of Threshold Pressure Gradient of Microchannels by Static Method[J]. Chin. Phys. Lett., 2007, 24(7): 064706
[10] JIANG Ren-Jie, SONG Fu-Quan, LI Hua-Mei. Flow Characteristics of Deionized Water in Microtubes[J]. Chin. Phys. Lett., 2006, 23(12): 064706
[11] XU Jie, YU Bo-Ming, YUN Mei-Juan. Effect of Clusters on Thermal Conductivity in Nanofluids[J]. Chin. Phys. Lett., 2006, 23(10): 064706
[12] YANG Er-Long, SONG Kao-Ping. Displacement Mechanism of Polymer Flooding by Molecular Tribology[J]. Chin. Phys. Lett., 2006, 23(9): 064706
[13] ZHANG Ji-Cheng, LIU Li, SONG Kao-Ping. Neural Approach for Calculating Permeability of Porous Medium[J]. Chin. Phys. Lett., 2006, 23(4): 064706
[14] CUI Kai, YANG Guo-Wei. A Continuation Method of Parameter Inversion for Non-Equilibrium Convection--Dispersion Equation[J]. Chin. Phys. Lett., 2005, 22(11): 064706
[15] YUN Mei-Juan, YU Bo-Ming, ZHANG Bin, HUANG Ming-Tao. A Geometry Model for Tortuosity of Streamtubes in Porous Media with Spherical Particles[J]. Chin. Phys. Lett., 2005, 22(6): 064706
Viewed
Full text


Abstract