Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 048101    DOI: 10.1088/0256-307X/29/4/048101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Growth of Ge/Si(100) Nanostructures by Radio-Frequency Magnetron Sputtering: the Role of Annealing Temperature
ALIREZA Samavati1**,S. K. Ghoshal2,Z. Othaman1
1Ibn Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 Skudai, Johor Baharu, Malaysia
2Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Cite this article:   
ALIREZA Samavati, S. K. Ghoshal, Z. Othaman 2012 Chin. Phys. Lett. 29 048101
Download: PDF(900KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Surface morphologies of Ge islands deposited on Si(100) substrates are characterized and their optical properties determined. Samples are prepared by rf magnetron sputtering in a high-vacuum chamber and are annealed at 600°C, 700°C and 800°C for 2 min at nitrogen ambient pressure. Atomic force microscopy, field emission scanning electron microscopy, visible photoluminescence (PL) and energy dispersive x−ray spectroscopy are employed. The results for the annealing temperature-dependent sample morphology and the optical properties are presented. The density, size and roughness are found to be strongly influenced by the annealing temperature. A red shift of ∼0.29 eV in the PL peak is observed with increasing annealing temperature.
Received: 05 November 2011      Published: 04 April 2012
PACS:  81.07-b  
  78.67-n  
  79.20.Rf (Atomic, molecular, and ion beam impact and interactions with surfaces)  
  78.55.Ap (Elemental semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/048101       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/048101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ALIREZA Samavati
S. K. Ghoshal
Z. Othaman
[1] Giri P K, Kesavamoorthy R, Panigrahi B K and Nair K G M 2005 Solid State Commun. 133 229
[2] Jiangong J, Kunji C, Xinfan H, Duan F and Dayou S 1993 Chin. Phys. Lett. 10 630
[3] Zheng Y, Yi S, Lin L J, Bo Y, Zhuang H, Lin P, Dou Z and Long W 2003 Chin. Phys. Lett. 20 2001
[4] Ma X, Wa F and Kauzlarich S M 2008 J. Solid State Chem. 181 1628
[5] Mestenza S N M and Frateschi N C 2007 J. Mater. Sci. 42 7757
[6] Seo M A, Kim D S, Kim H S, Choi D S and Jeoung S C 2006 Opt. Express 14 4908
[7] Garoufalis C S 2009 J. Math. Chem 46 934
[8] Kartopu G, Bayliss S C, Hummel R E and Ekinci Y 2004 J. Appl. Phys. 95 3466
[9] Chaparro S A, Zhang Y, Drucker J, Chandrasekhar D and Smith D J 2000 J. Appl. Phys. 87 2245
[10] Dashiell M W, Denker U, Muller C, Costantini G, Manzano C, Kern K and Schmidt O G 2002 Appl. Phys. Lett. 80 1279
[11] Zhong Z, Halilovic A, Muhlberger M, Schaffler F and Bauer G 2003 J. Appl. Phys. 93 6258
[12] Wohl G, Schollhorn C, Schmidt O G, Brunner K, Eberl K, Kienzle O and F Ernst 1998 Thin. Solid Film 321 86
[13] Yam V, Thanh V L, Debarre D, Zheng Y and D Bouchier 2004 Appl. Surf. Sc. 224 143
[14] Das A K, Ghose S K, Dev B N, Kuri G and Yang T R 2000 Appl. Surf. Sc. 165 260
[15] Simonsen A C, Schleberger M, Tougaard S, Hansen J L and Larsen A N 1999 Thin. Solid Film 338 165
[16] Radic N, Pivac B, Dubcek P, Kovacevic I and Bernstorff S 2006 Thin. Solid Film 515 752
[17] Khan A F, Mehmood M, Rana A M and Muhammad T 2010 Appl. Surf. Sc. 256 2031
[18] Takagahara T and Takeda K 1992 Phys. Rev. B 46 15578
[19] Riabinina D, Durand C and Chaker M 2006 Nanotechnology 17 2152
[20] Zhang B, Shrestha S, Aliberti P, Green M A and Conibeer G 2010 Thin. Solid Film 518 5483
[21] Oku T, Nakayama T, Kuno M, Nozue Y, Wallenberg L R, Niihara K and Suganuma K 2000 Mater. Sci. Engin. B 74 242
Viewed
Full text


Abstract