Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 047302    DOI: 10.1088/0256-307X/29/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes
ZHAO Peng1**,LIU De-Sheng2,3
1School of Physics and Technology, University of Jinan, Jinan 250022
2School of Physics, Shandong University, Jinan 250100
3Department of Physics, Jining University, Qufu 273155
Cite this article:   
ZHAO Peng, LIU De-Sheng 2012 Chin. Phys. Lett. 29 047302
Download: PDF(1280KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the nonequilibrium Green's function method and density functional theory calculations, we theoretically investigate the electronic transport properties of an anthraquinone-based molecular switch with carbon nanotube electrodes. The molecules that comprise the switch can convert between reduced hydroquinone (HQ) and oxidized anthraquinne (AQ) states via redox reactions. Our results show that the on-off ratio is increased one order of magnitude when compared to the case of gold electrodes. Moreover, an obvious negative differential resistance behavior at much low bias (0.07 V) is observed in the HQ form.
Received: 21 November 2011      Published: 04 April 2012
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  85.65.+h (Molecular electronic devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/047302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/047302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Peng
LIU De-Sheng
[1] Weibel N, Grunder S and Mayor M 2007 Org. Biomol. Chem. 5 2343
[2] Zhao P, Fang C F, Xia C J, Wang Y M, Liu D S and Xie S J 2008 Appl. Phys. Lett. 93 013113
[3] Zhao P, Zhang Z, Wang P J, Zhang H K, Ren M J and Li F 2010 Chin. Phys. Lett. 27 027304
[4] Pati R and Karna S P 2004 Phys. Rev. B 69 155419
[5] Emberly E G and Kirczenow G 2003 Phys. Rev. Lett. 91 188301
[6] Chen F, He J, Nuckolls C, Roberts T, Klare J E and Lindsay S 2005 Nano Lett. 5 503
[7] van Dijk E H, Myles D J T, van der Veen M H and Hummelen J C 2006 Org. Lett. 8 2333
[8] Zhao P, Liu D S, Wang P J, Zhang Z, Fang C F and Ji G M 2011 Physica B 406 895
[9] George C B, Ratner M A and Lambert J B 2009 J. Phys. Chem. A 113 3876
[10] Brito Silva Jr. C A, da Silva S J S, Leal J F P, Pinheiro F A and Del Nero J 2011 Phys. Rev. B 83 245444
[11] Horiuchi K, Kato T, Hashii S, Hashimoto A, Sasaki T, Aoki N and Ochiai Y 2005 Appl. Phys. Lett. 86 153108
[12] Guo X F, Small J P, Klare J E, Wang Y, Purewal M S, Tam I W, Hong B H, Caldwell R, Huang L, O'Brien S, Yan J M, Breslow R, Wind S J, Hone J, Kim P and Nuckolls C 2006 Science 311 356
[13] Zhao P, Liu D S, Zhang Y, Wang P J and Zhang Z 2011 Chin. Phys. Lett. 28 047301
[14] Wei D C, Liu Y Q, Cao L C, Wang Y, Zhang H L and Yu G 2008 Nano Lett. 8 1625
[15] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[16] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[17] Troullier N and Martins J 1991 Phys. Rev. B 43 1993
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Buttiker and Landauer R 1985 Phys. Rev. B 31 6207
[20] Reed M A, Chen J, Rawlett A M, Price D W and Tour J M 2001 Appl. Phys. Lett. 78 3735
[21] Stokbro K, Taylor J, Brandbyge M, Mozos J L and Ordejon P 2003 Comput. Mater. Sci. 27 151
[22] Brown E R, Söderström J R, Parker C D, Mahoney L J, Molvar K M and McGill T C 1991 Appl. Phys. Lett. 58 2291
[23] Broekaert T P E, Brar B, van der Wagt J P A, Seabaugh A C, Morris F J, Moise T S, Beam E A III and Frazier G A 1998 IEEE J. Solid State Circuits 22 1342
[24] Mathews R H, Sage J P, Sollner T C L G, Calawa S D, Chen C L, Mahoney L J, Maki P A and Molvar K M 1999 Proc. IEEE 87 596
[25] Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550
[26] Long M Q, Chen K Q, Wang L L, Qing W, Zou B S and Shuai Z 2008 Appl. Phys. Lett. 92 243303
[27] Fan Z Q, Chen K Q, Wan Q, Zou B S, Duan W H and Shuai Z 2008 Appl. Phys. Lett. 92 263304
[28] Fan Z Q and Chen K Q 2010 Appl. Phys. Lett. 96 053509
[29] Zhao P, Wang P J, Zhang Z and Liu D S 2010 Phys. Lett. A 374 1167
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 047302
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 047302
[3] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 047302
[4] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 047302
[5] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 047302
[6] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 047302
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 047302
[8] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 047302
[9] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 047302
[10] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 047302
[11] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 047302
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 047302
[13] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 047302
[14] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 047302
[15] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 047302
Viewed
Full text


Abstract