Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 047101    DOI: 10.1088/0256-307X/29/4/047101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Non-Equilibrium Quantum Entanglement in Biological Systems
LI Hong-Rong1**,ZHANG Pei1,GAO Hong1,BI Wen-Ting2,ALAMRI M. D.3,LI Fu-Li1
1Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049
2School of Microelectronics, Xidian University, Xi'an 710071
3The National Centre for Mathematics and Physics, KACST, PO BOX 6086, Riyadh, 11442, Saudi Arabia
Cite this article:   
LI Hong-Rong, ZHANG Pei, GAO Hong et al  2012 Chin. Phys. Lett. 29 047101
Download: PDF(434KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A non-equilibrium model of a classically driven quantum harmonic oscillator is proposed to explain persistent quantum entanglement in biological systems at ambient temperature. The conditions for periodic entanglement generation are derived. Our results support the evidence that biological systems may have quantum entanglement at biological temperatures.
Received: 17 November 2011      Published: 04 April 2012
PACS:  71.35.-y (Excitons and related phenomena)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/047101       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/047101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Hong-Rong
ZHANG Pei
GAO Hong
BI Wen-Ting
ALAMRI M. D.
LI Fu-Li
[1] Fleming G R and Grondelle R V 1994 Phys. Today 47 (February) 48
[2] Ritz T et al 2004 Nature 429 177
[3] Franco M I et al 2011 Proc. Nat. Acad. Sci. USA 108 3797
[4] Lee H, Cheng Y C, and Fleming G R 2007 Science 316 1462
Engel G S et al 2007 Nature 446 782
Sarovar M et al 2010 Nature Phys. 6 462
Gauger E M et al 2011 Phys. Rev. Lett. 106 040503
[5] Plenio M B and Huelga 2008 New J. Phys. 10 113019
Rebentrost P et al 2009 New J. Phys. 11 033003
[6] Brixner T et al 2005 Nature 434 625
[7] Collini E and Scholes G D 2009 Science 323 369
[8] Calsamiglia J et al 2005 Phys. Rev. Lett. 95 180502
[9] Cai J M et al 2010 Phys. Rev. E 82 021921
[10] Galve F et al 2010 Phys. Rev. Lett. 105 180501
[11] Adolphs J and Renger T 2006 Biophys. J. 91 2778
[12] Arnesen M C et al 2001 Phys. Rev. Lett. 87 017901
[13] Cho S Y and McKenzie R H 2009 Phys. Rev. A 73 012109
[14] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University)
[15] Wootters W K 1998 Phys. Rev. Lett. 80 2245
Related articles from Frontiers Journals
[1] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 047101
[2] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 047101
[3] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 047101
[4] Xin-Yue Zhang, Gui-Li Yu, Li-Hua Wang, Gang Tang. Combined Effect of Uniaxial Strain and Magnetic Field on the Exciton States in Semiconducting Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2018, 35(8): 047101
[5] Yan Lu, Wen-Gang Lu, Li Wang. Structure Dependence of Excitonic Effects in Chiral Graphene Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(1): 047101
[6] Gui-Li Yu, Yong-Lei Jia, Gang Tang. Splitting Phenomenon Induced by Magnetic Field in Metallic Carbon Nanotubes[J]. Chin. Phys. Lett., 2016, 33(03): 047101
[7] YU Gui-Li, LI Gui-Chen, JIA Yong-Lei, TANG Gang. States of Excitons and Linear Optical Spectra in Metallic Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2014, 31(09): 047101
[8] ZHANG Yan-Fei, ZHAO Su-Ling, XU Zheng, KONG Chao. The Formation of Exciplex and Improved Turn-on Voltage in a Hybrid Organic-Inorganic Light-Emitting Diode[J]. Chin. Phys. Lett., 2012, 29(11): 047101
[9] CHU Sai-Sai, GAO Chao, WANG Shu-Feng**, GONG Qi-Huang** . Ultrafast Dynamics of Polythiophene with Phenyl Vinylene Branches Studied by Femtosecond Fluorescence Spectroscopy in Solution[J]. Chin. Phys. Lett., 2011, 28(11): 047101
[10] LI Xiu-Ping, WEI Hua-Rong, XU Li-Ping, GONG Jian-Ping, YAN Wei-Xian . Tunneling Processes in Optically Excited Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(10): 047101
[11] WU Cong-Jun**, Ian Mondragon-Shem, , ZHOU Xiang-Fa . Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(9): 047101
[12] ZHAO Hong-Xia, ZHAO Hui**, CHEN Yu-Guang . Dynamical Process of Dissociation of Excitons in Polymer Chains with Impurities[J]. Chin. Phys. Lett., 2011, 28(9): 047101
[13] YANG Shao-Peng**, HUANG Da, GE Da-Yong, LIU Bo-Ya, WANG Li-Shun, FU Guang-Sheng . Dynamics of Exciton Diffusion in PVK:Phosphorescent Materials/Al Hetero-Structures[J]. Chin. Phys. Lett., 2011, 28(8): 047101
[14] KIM Nam-Chol, LI Jian-Bo, LIU Shao-Ding, CHENG Mu-Tian, HAO Zhong-Hua. Influence of Excitation Pulse Width on the Second-Order Correlation Functions of the Exciton-Biexciton Emissions[J]. Chin. Phys. Lett., 2010, 27(3): 047101
[15] SHU Shi-Wei, MA Guo-Hong. Temperature-Dependent Defect-Induced New Emission in ZnSe Crystal[J]. Chin. Phys. Lett., 2009, 26(4): 047101
Viewed
Full text


Abstract