Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 044205    DOI: 10.1088/0256-307X/29/4/044205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier
WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
WU Wen-Han, HUANG Xi, YU Yu et al  2012 Chin. Phys. Lett. 29 044205
Download: PDF(609KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An all-optical return-to-zero differential quadrature phase-shift keying (RZ-DQPSK) signal regeneration scheme is experimentally demonstrated. Thanks to the gain saturation effect, common quantum-well semiconductor optical amplifiers have the ability to regenerate the amplitude distorted RZ-DQPSK signal, so amplitude noise can be reduced while phase information will not be distorted. A significant eye-opening improvement and a negative power penalty of about 1 dB can be achieved for an 80 Gb/s RZ-DQPSK signal.
Received: 29 September 2011      Published: 04 April 2012
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.30.Lr (Modulation and optical transfer functions)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/044205       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/044205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Wen-Han
HUANG Xi
YU Yu
ZHANG Xin-Liang
[1] Gnauck A H and Winzer P J 2005 IEEE J. Lightwave Technol. 23 115
[2] Weber H G, Ferber S, Kroh M, Schmidt Langhorst C, Ludwig R, Marembert V, Boerner C, Futami F, Watanabe S and Schubert C 2006 Electron. Lett. 42 178
[3] Croussore K, Kim I, Kim C, Han Y F and Li G 2006 Opt. Exp. 14 2085
[4] Bogris A and Syvridis D 2006 IEEE Photon. Technol. Lett. 18 2144
[5] Elschner R, De M, Bunge C A and Petermann K 2007 Opt. Lett. 32 112
[6] Matsumoto M 2005 IEEE Photon. Technol. Lett. 17 1055
[7] Striegler A G, Meissner M, Cvecek K, Sponsel K, Leuchs G and Schmauss B 2005 IEEE Photon. Technol. Lett. 17 639
[8] Gordon J P and Mollenauer L F 1990 Opt. Lett. 15 1351
[9] Huang X, Zhang Z, Qin C, Yu Y and Zhang Xl 2011 IEEE J. Quantum Electron. 47 819
[10] Cvecek K, Sponsel K, Onishchukov G, Schmauss B and Leuchs G 2007 IEEE Photon. Technol. Lett. 19 146
Related articles from Frontiers Journals
[1] Yue Lang, Zhaoyang Peng, and Zengxiu Zhao. Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection[J]. Chin. Phys. Lett., 2022, 39(11): 044205
[2] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 044205
[3] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 044205
[4] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 044205
[5] Hongdan Zhang, Xiwang Liu, Facheng Jin, Ming Zhu, Shidong Yang, Wenhui Dong, Xiaohong Song, and Weifeng Yang. Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission[J]. Chin. Phys. Lett., 2021, 38(6): 044205
[6] Nana Dong, Yan Zhou, Shanbiao Pang, Xiaodong Huang, Ke Liu, Lunhua Deng, and Huailiang Xu. Strong-Field-Induced N$_{2}^{+}$ Air Lasing in Nitrogen Glow Discharge Plasma[J]. Chin. Phys. Lett., 2021, 38(4): 044205
[7] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 044205
[8] Fei Li, Yu-Jun Yang, Jing Chen, Xiao-Jun Liu, Zhi-Yi Wei, and Bing-Bing Wang. Universality of the Dynamic Characteristic Relationship of Electron Correlation in the Two-Photon Double Ionization Process of a Helium-Like System[J]. Chin. Phys. Lett., 2020, 37(11): 044205
[9] Fan Xiao , Xiaohui Fan , Li Wang , Dongwen Zhang , Jianhua Wu , Xiaowei Wang, and Zengxiu Zhao. Generation of Intense Sub-10 fs Pulses at 385 nm[J]. Chin. Phys. Lett., 2020, 37(11): 044205
[10] Cong Guo, Shuai-Shuai Sun, Lin-Lin Wei, Huan-Fang Tian, Huai-Xin Yang, Shu Gao, Yuan Tan, and Jian-Qi Li. Theoretical Simulation of the Temporal Behavior of Bragg Diffraction Derived from Lattice Deformation[J]. Chin. Phys. Lett., 2020, 37(7): 044205
[11] Chong-Biao Luan, Hong-Tao Li. Influence of Hot-Carriers on the On-State Resistance in Si and GaAs Photoconductive Semiconductor Switches Working at Long Pulse Width[J]. Chin. Phys. Lett., 2020, 37(4): 044205
[12] Xiaowei Wang, Li Wang, Fan Xiao, Dongwen Zhang, Zhihui Lü, Jianmin Yuan, Zengxiu Zhao. Generation of 88as Isolated Attosecond Pulses with Double Optical Gating[J]. Chin. Phys. Lett., 2020, 37(2): 044205
[13] Jia-Jun Song, Xiang-Hao Meng, Zhao-Hua Wang, Xian-Zhi Wang, Wen-Long Tian, Jiang-Feng Zhu, Shao-Bo Fang, Hao Teng, Zhi-Yi Wei. Generation of Femtosecond Laser Pulse at 1.43GHz from an Optical Parametric Oscillator Based on LBO Crystal[J]. Chin. Phys. Lett., 2019, 36(12): 044205
[14] Jin-Ming Chen, Jin-Ping Yao, Zhao-Xiang Liu, Bo Xu, Fang-Bo Zhang, Yue-Xin Wan, Wei Chu, Zhen-Hua Wang, Ling-Ling Qiao, Ya Cheng. Dramatic Spectral Broadening of Ultrafast Laser Pulses in Molecular Nitrogen Ions[J]. Chin. Phys. Lett., 2019, 36(10): 044205
[15] Jie Shao, Cai-Ping Zhang, Jing-Chao Jia, Jun-Lin Ma, Xiang-Yang Miao. Effect of Carrier Envelope Phase on High-Order Harmonic Generation from Solid[J]. Chin. Phys. Lett., 2019, 36(5): 044205
Viewed
Full text


Abstract