Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 040302    DOI: 10.1088/0256-307X/29/4/040302
GENERAL |
Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field
QIAN Yi,XU Jing-Bo**
Zhejiang Institute of Modern Physics and Physics Department, Zhejiang University, Hangzhou 310027
Cite this article:   
QIAN Yi, XU Jing-Bo 2012 Chin. Phys. Lett. 29 040302
Download: PDF(1106KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined.
Received: 15 October 2011      Published: 04 April 2012
PACS:  03.67.-a (Quantum information)  
  03.65.Ya  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/040302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/040302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIAN Yi
XU Jing-Bo
[1] Nielsen M A and Chuand I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)

[2] Hagley E et al 1997 Phys. Rev. Lett. 79 1

[3] Rauschenbeutel A et al 2000 Science 288 2024

[4] Brennecke F et al 2007 Nature 450 268

[5] McKeever J et al 2003 Phys. Rev. Lett. 90 133602

[6] Goebel A M, Wagenknecht C, Zhang Q, Chen Y A, Chen K, Schmiedmayer J and Pan J W 2008 Phys. Rev. Lett. 101 080403

[7] Deng Z J, Feng M and Gao K L 2007 Phys. Rev. A 75 024302

[8] Braunstein S L, Caves C M, Jozsa R, Linden N, Popescu S and Schack R 1999 Phys. Rev. Lett. 83 1054

[9] Meyer D A 2000 Phys. Rev. Lett. 85 2014

[10] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502

[11] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501

[12] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901

[13] Bennett C H, DiVincenzo D P, Fuchs C A, Mor T, Rains E, Shor P W, Smolin J A and Wootters W K 1999 Phys. Rev. A 59 1070

[14] Horodecki M, Horodecki P, Horodecki R, Oppenheim J, Sen A, Sen U and Synak Radtke B 2005 Phys. Rev. A 71 062307

[15] Vedreal V 2010 Found Phys. 40 1141

[16] Yeo Y 2008 Phys. Rev. A 78 022334

[17] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103

[18] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101

[19] Hao X, Ma C L and Sha J Q 2010 J. Phys. A: Math. Theor. 43 425302

[20] Maziero J, eleri L C C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102

[21] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401

[22] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nature Commun. 1 7

[23] Solano E, Agarwal G S and Walther H 2003 Phys. Rev. Lett. 90 027903

[24] Liu Y X, Sun C P and Nori F 2006 Phys. Rev. A 74 052321

[25] Zhang J S and Xu J B 2009 Opt. Commun. 282 2543

[26] Zhang J S and Xu J B 2009 Opt. Commun. 282 3652

[27] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105

[28] Wootters W K 1998 Phys. Rev. Lett. 80 2245

[29] Garnerone S, Jacobson N B, Haas S and Zanardi P 2009 Phys. Rev. Lett. 102 057205

[30] Terashima H 2011 Phys. Rev. A 83 032114

[31] Buscemi F and Datta N 2011 Phys. Rev. Lett. 106 130503
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 040302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 040302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 040302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 040302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 040302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 040302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 040302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 040302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 040302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 040302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 040302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 040302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 040302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 040302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 040302
Viewed
Full text


Abstract