Chin. Phys. Lett.  2012, Vol. 29 Issue (3): 030701    DOI: 10.1088/0256-307X/29/3/030701
GENERAL |
Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor
LI Zhi-Ming1**, JIANG Hai-Ying1, HAN Yan-Bin1, LI Jin-Ping1, YIN Jian-Qin1, ZHANG Jin-Cheng2
1Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, School of Information Science and Engineering, University of Ji'nan, Ji'nan 250022
2Key Laboratory of Fundamental Science for National on Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
Cite this article:   
LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin et al  2012 Chin. Phys. Lett. 29 030701
Download: PDF(687KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of coil location on wafer temperature is analyzed in a vertical MOCVD reactor by induction heating. It is observed that the temperature distribution in the wafer with the coils under the graphite susceptor is more uniform than that with the coils around the outside wall of the reactor. For the case of coils under the susceptor, we find that the thickness of the susceptor, the distance from the coils to the susceptor bottom and the coil turns significantly affect the temperature uniformity of the wafer. An optimization process is executed for a 3-inch susceptor with this kind of structure, resulting in a large improvement in the temperature uniformity. A further optimization demonstrates that the new susceptor structure is also suitable for either multiple wafers or large-sized wafers approaching 6 and 8 inches.
Keywords: 07.20.Hy      02.60.Cb     
Received: 25 June 2011      Published: 11 March 2012
PACS:  07.20.Hy (Furnaces; heaters)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/3/030701       OR      https://cpl.iphy.ac.cn/Y2012/V29/I3/030701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Zhi-Ming
JIANG Hai-Ying
HAN Yan-Bin
LI Jin-Ping
YIN Jian-Qin
ZHANG Jin-Cheng
[1] Nakamura S, Mukai T and Senoh M 1994 Appl. Phys. Lett. 64 1687
[2] Rinku P P and Raymond A A 2006 J. Cryst. Growth 286 259
[3] Bandic Z Z, Piquette E C, Bridger P M, Beach R A, Kuech T F and Mcgill T C 1998 Solid State Electron. 4 2289
[4] Hemmingsson C, Paskov P P, Pozina G, Heuken M, Schineller B and Monemar B 2006 Superlattices and Microstructures 40 205
[5] Park S H, Moon Y T, Lee J S, Kwon H K, Park J S and Ahn D 2011 Chin. Phys. Lett. 28 078503
[6] Xu G Y, Salvador A, Kim W, Fan Z, Lu C, Tang H, Morkoc H, Smith G, Estes M, Goldberg B, Yank W and Krishnankutty S, 1997 Appl. Phys. Lett. 71 2154
[7] Theodoropoulos C, Mountziaris T J, Moffat H K and Han J 2000 J. Cryst. Growth 217 65
[8] Chen Q S, Gao P and Hu W R 2004 J. Cryst. Growth 266 320
[9] Li Z M, Hao Y, Zhang J C et al 2009 Chin. Phys. B 18 5072
[10] Li Z M, Hao Y, Zhang J C et al 2010 Chin. Phys. Lett. 27 070710
[11] Li Z M, Xu S R, Zhang J C et al 2009 J. Semiconduct. 30 113004
[12] Chang H Y, Adomaitisa R A, Kidder J N and Rubloff G W 2001 J. Vacuum Sci. Technol. B 19 230
[13] Shigeki H and Maruyama S 2002 Am. Soc. Mech. Engin. 5 45
Related articles from Frontiers Journals
[1] LI Xiao-Lei**,WANG Li-Ying. The Microstructure and Thermal Conductivity of Aluminum Nitride Ceramics Sintered at High Pressure with CaC2[J]. Chin. Phys. Lett., 2012, 29(5): 030701
[2] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 030701
[3] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 030701
[4] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 030701
[5] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 030701
[6] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 030701
[7] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 030701
[8] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 030701
[9] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 030701
[10] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 030701
[11] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 030701
[12] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 030701
[13] LI Zhi-Ming, HAO Yue, ZHANG Jin-Cheng, CHEN Chi, CHANG Yong-Ming, XU Sheng-Rui, BI Zhi-Wei. Optimization and Finite Element Analysis of the Temperature Field in a Nitride MOCVD Reactor by Induction Heating[J]. Chin. Phys. Lett., 2010, 27(7): 030701
[14] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 030701
[15] YUE Song, LI Zhi, CHEN Jian-Jun, GONG Qi-Huang. Bending Loss Calculation of a Dielectric-Loaded Surface Plasmon Polariton Waveguide Structure[J]. Chin. Phys. Lett., 2010, 27(2): 030701
Viewed
Full text


Abstract