Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 021102    DOI: 10.1088/0256-307X/29/2/021102
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Electron-Positron Pair Production in an Elliptic Polarized Time Varying Field
XIE Bai-Song1, Mohamedsedik Melike2, Dulat Sayipjamal2
1College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
2School of Physics Science and Technology, Xinjiang University, Urumqi 830046
Cite this article:   
XIE Bai-Song, Mohamedsedik Melike, Dulat Sayipjamal 2012 Chin. Phys. Lett. 29 021102
Download: PDF(442KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using the worldline instanton method we investigate the electron-positron pair production rate from a vacuum in the presence of a time-dependent field with general elliptic polarization. It is found that as field polarization changes from a linear to a circular one, the pair production rate would change to some extent. When field strength is weak while frequency is high, the pair production rate changes significantly with polarization. However, when field strength is strong while frequency is low, the pair production rate from a vacuum is insensitive to field polarization and the results of the pair production rate are the same as those in a constant field. Our results are compared with previous work and the implications of our study are briefly discussed.
Keywords: 11.27.+d      12.20.Ds      12.20.-m     
Received: 21 September 2011      Published: 11 March 2012
PACS:  11.27.+d (Extended classical solutions; cosmic strings, domain walls, texture)  
  12.20.Ds (Specific calculations)  
  12.20.-m (Quantum electrodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/021102       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/021102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIE Bai-Song
Mohamedsedik Melike
Dulat Sayipjamal
[1] Sauter F 1931 Z. Phys. 69 742
[2] Heisenberg W and Euler H 1936 Z. Phys. 98 714
[3] Schwinger J 1951 Phys. Rev. 82 664
[4] Brezin E and Itzykson C 1970 Phys. Rev. D 2 1191
[5] Ringwald A 2001 Phys. Lett. B 510 107
[6] Piazza A Di 2004 Phys. Rev. D 70 053013
[7] Dunne G V and Schubert C 2005 Phys. Rev. D 72 105004
[8] Kim S P and Page D N 2006 Phys. Rev. D 73 065020
Kim S P and Page D N 2007 Phys. Rev. D 75 045013
[9] Popov V S 2002 Phys. Lett. A 298 83
[10] Narozhny N B, Bulanov S S, Mur V D and Popov V S 2004 Phys. Lett. A 330 1
[11] Burke D L et al 1997 Phys. Rev. Lett. 79 1626
[12] http://www.extreme-light-infrastructure.eu/
[13] Shen B and Meyer ter Vehn J 2001 Phys. Rev. E 65 016405
[14] Bulanov S S 2004 Phys. Rev. E 69 036408
[15] Thoma M H 2009 Rev. Mod. Phys. 81 959
[16] Chen H, Wilks S C and Bonlie J D et al 2009 Phys. Rev. Lett. 102 105001
Chen H, Wilks S C and Meyerhofer D D et al 2010 Phys. Rev. Lett. 105 015003
[17] Feynman R P 1950 Phys. Rev. 80 440
Feynman R P 1951 Phys. Rev. 84 108
[18] Schubert C 2001 Phys. Rep. 355 73
[19] Affleck I K, Alvarez O and Manton N S 1982 Nucl. Phys. B 197 509
Related articles from Frontiers Journals
[1] ZENG Ran**, YANG Ya-Ping, . Repulsive and Restoring Casimir Forces Based on Magneto-Optical Effect[J]. Chin. Phys. Lett., 2011, 28(5): 021102
[2] WANG Hua-Wen, CHENG Hong-Bo* . Virial Relation for Compact Q-Balls in the Complex Signum-Gordon Model[J]. Chin. Phys. Lett., 2011, 28(12): 021102
[3] Koijam Manihar Singh*, Kangujam Priyokumar Singh** . Cosmic String Universes Embedded with Viscosity[J]. Chin. Phys. Lett., 2011, 28(10): 021102
[4] Ciprian Dariescu, Marina-Aura Dariescu. Boson Nebulae Charge[J]. Chin. Phys. Lett., 2010, 27(1): 021102
[5] ZHOU Hai-Qing. Two-Photon-Exchange Correction to Elastic ep Scattering in the Forward Angle Limit[J]. Chin. Phys. Lett., 2009, 26(6): 021102
[6] XIONG Ai-Min, CHEN Xiao-Song. Casimir Force of Piston Systems with Arbitrary Cross Sections under Different Boundary Conditions[J]. Chin. Phys. Lett., 2009, 26(6): 021102
[7] DUAN Hai-Bin, XING Zhi-Hui. Improved Quantum Evolutionary Computation Based on Particle SwarmOptimization and Two-Crossovers[J]. Chin. Phys. Lett., 2009, 26(12): 021102
[8] S. H. Kim. Electric-Wiggler-Enhanced Three-Quantum Scattering and the Output Power Affected by this Scattering in a Free-Electron Laser[J]. Chin. Phys. Lett., 2009, 26(1): 021102
[9] ZHANG Ying, WANG Qing. Gauge Covariant Fermion Propagator in the Presence of Arbitrary External Gauge Field and Its Schwinger--Dyson Equation[J]. Chin. Phys. Lett., 2008, 25(4): 021102
[10] LIANG Wen-Feng, WU Ming, LIU Hui, CHEN Xiang-Song. Gauge-Invariant Spin and Orbital Angular Momentum of Laguerre--Gaussian Laser[J]. Chin. Phys. Lett., 2008, 25(12): 021102
[11] WANG Jing, ZHANG Xiang-Dong, PEI Shou-Yong, LIU Da-He. Temperature Tuning of Casimir Effect[J]. Chin. Phys. Lett., 2006, 23(9): 021102
[12] S. H. Kim. Anomalously Strong Scattering of Spontaneously Produced Laser Radiation in the First Free-Electron Laser and Study of Free-Electron Two-Quantum Stark Lasing in an Electric Wiggler with Quantum-Wiggler Electrodynamics[J]. Chin. Phys. Lett., 2006, 23(6): 021102
[13] ZHAO Yan, SHAO Cheng-Gang, LUO Jun. Finite Temperature Casimir Effect for Corrugated Plates[J]. Chin. Phys. Lett., 2006, 23(11): 021102
[14] JIANG Min, FANG Zhen-Yun, SANG Wen-Long, GAO Fei. Accurate Calculation of the Differential Cross Section of Bhabha Scattering with Photon Chain Loops Contribution in QED[J]. Chin. Phys. Lett., 2006, 23(10): 021102
[15] LI Yun-De. Topological String in Quantum-Chromodynamical Chiral Phase Transitions[J]. Chin. Phys. Lett., 2005, 22(5): 021102
Viewed
Full text


Abstract