Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 127103    DOI: 10.1088/0256-307X/29/12/127103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Influence of Pressure on the Structural, Electronic and Mechanical Properties of Cubic SrHfO3: A First-Principles Study
FENG Li-Ping**, WANG Zhi-Qiang, LIU Qi-Jun, TAN Ting-Ting, LIU Zheng-Tang
State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072
Cite this article:   
FENG Li-Ping, WANG Zhi-Qiang, LIU Qi-Jun et al  2012 Chin. Phys. Lett. 29 127103
Download: PDF(1771KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The structural, electronic and mechanical properties of cubic SrHfO3 under hydrostatic pressure up to 70 GPa are investigated using the first-principles density functional theory (DFT). The calculated lattice parameter, elastic constants and mechanical properties of cubic SrHfO3 at zero pressure are in good agreement with the available experimental data and other calculational values. As pressure increases, cubic SrHfO3 will change from an indirect band gap (Γ R) compound to a direct band gap (ΓΓ) compound. Charge densities reveal the coexistence of covalent bonding and ionic bonding in cubic SrHfO3. With the increase of pressure, both the covalent bonding (HfO) and ionic bonding (SrO) are strengthened. Cubic SrHfO3 is mechanically stable when pressure is lower than 55.1 GPa, whereas that is instable when pressure is higher than 55.1 GPa. With the increasing pressure, enthalpy, bulk modulus, shear modulus and Young's modulus increase, whereas the lattice parameter decreases. Moreover, cubic SrHfO3 under pressure has higher hardness and better ductility than that at zero pressure.
Received: 08 June 2012      Published: 04 March 2013
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  62.20.-x (Mechanical properties of solids)  
  73.20.At (Surface states, band structure, electron density of states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/127103       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/127103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Li-Ping
WANG Zhi-Qiang
LIU Qi-Jun
TAN Ting-Ting
LIU Zheng-Tang
[1] Wang H M, Simmonds M C and Rodenburg J M 2003 Mater. Chem. Phys. 77 802
[2] Feteira A, Sinclair D C, Rajab K Z and Lanagan M T 2008 J. Am. Ceram. Soc. 91 893
[3] Sousa M, Rossel C, Marchiori C, Carmi D, Locquet J P, Webb D J et al 2007 J. Appl. Phys. 102 104103
[4] Nikl M, Bohacek P, Trunda B, Jary V, Fabeni P, Studnicka V, Kucerkova R and Beitlerova A 2011 Opt. Mater. 34 433
[5] Yamanaka S, Maekawa T, Muta H, Matsuda T, Kobayashi S I and Kurosaki K 2004 J. Solid State Chem. 177 3484
[6] Ji Y M, Jiang D Y Qin L S, Chen J J, Feng T, Liao Y K and et al 2005 J. Cryst. Growth 280 93
[7] Lauria A, Chiodini N, Mihokova E, Moretti F, Nale A, Nikl M and Vedda A 2010 Opt. Mater. 32 1356
[8] Villanueva-Ibanez M, Luyer L C, Parola S, Marty O and Mugnier J 2004 J. Sol-Gel Sci. Technol. 31 277
[9] Lupina G, Koz?owski G, Dabrowski J, Dudek P, Lippert G and Müssig H J 2008 Appl. Phys. Lett. 93 252907
[10] Sawkar-Mathur M, Marchiori C, Fompeyrine J and Toney M F 2010 Thin Solid Films 518 S118
[11] Vali R 2009 Solid State Commun. 149 519
[12] Liu Q J, Liu Z T, Feng L P, Tian H, Liu L and Liu W T 2010 Comput. Mater. Sci. 48 677
[13] Feng L P, Liu Z T, Liu Q J and Tian H 2010 Comput. Mater. Sci. 50 454
[14] Feng Z B, Hu H Q, Cui S X, Bai C L and Li H S 2009 J. Phys. Chem. Solids 70 412
[15] Du H J, Guo L C, Li D C, Yu D L and He J L 2009 Chin. Phys. Lett. 26 016403
[16] Hu Q K, Wang H Y, Wu Q H, He J L and Zhang G L 2011 Chin. Phys. Lett. 28 126101
[17] Zhang Q L, Zhang P, Song H F and Liu H F 2008 Chin. Phys. B 17 1341
[18] Hao A M, Yang X C, Li J, Xin W, Zhang S H, Zhang X Y and Liu R P 2009 Chin. Phys. Lett. 26 077103
[19] Pulay P 1980 Chem. Phys. Lett. 73 393
[20] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[22] Pfrommer B G, C? t é M, Louie S G and Cohen M L 1997 J. Comp. Physiol. 131 233
[23] Kennedy B J, Howard C J and Chakoumakos B C 1999 Phys. Rev. B 60 2972
[24] Born M and Huang K 1982 Dynamical Theory and Experiment I (Berlin: Springer-Verlag)
[25] Sin'ko G V and Smirnov N A 2002 J. Phys.: Condens. Matter 14 6989
[26] Voigt W 1928 Lehrbuch der kristallphysik (Teubner Leipzig)
[27] Reuss A and Angew Z 1929 J. Appl. Math. Mech. 9 49
[28] Hill R 1952 Proc. Phys. Soc. A 65 349
[29] Hou Z F 2009 Phys. Status Solidi B 246 135
[30] Vali R 2008 Solid State Commun. 148 29
[31] Yu X, Luo X G, Chen G F, Shen J and Li Y X 2007 Acta Phys. Sin. 56 5366 (in Chinese)
[32] Wang Y X, Wang C L, Zhong W L, Zhao M L, Li J C and Xue X Y 2004 Acta Phys. Sin. 53 214 (in Chinese)
[33] Mulliken R S 1955 J. Chem. Phys. 23 1833
[34] Frantsevich I N, Voronor F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators (Naukova Dumka, Kiev)
[35] Shein I R and Ivanovskii A L 2008 J. Phys.: Condens. Matter 20 415218
[36] Pugh S F 1954 Philos. Mag. 45 823
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 127103
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 127103
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 127103
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 127103
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 127103
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 127103
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 127103
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 127103
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 127103
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 127103
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 127103
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 127103
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 127103
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 127103
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 127103
Viewed
Full text


Abstract