Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 120303    DOI: 10.1088/0256-307X/29/12/120303
GENERAL |
Quantum Stackelberg Duopoly with Continuous Distributed Incomplete Information
WANG Xia 1*, HU Cheng-Zheng2
1Huazhong University of Science and Technology Wenhua College, Wuhan 430074
2Department of Physics, Wuhan University, Wuhan 430072
Cite this article:   
WANG Xia, HU Cheng-Zheng 2012 Chin. Phys. Lett. 29 120303
Download: PDF(2447KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A general model of the quantum Stackelberg duopoly is constructed by introducing the "minimal" quantum structure into the Stackelberg duopoly with continuous distributed incomplete information, where both players only know the continuous distribution of the competitor's unit cost. In this model, the cases with complete information, discrete distributed incomplete information, and continuous distributed asymmetric information are all involved. Because of different roles played by the total information uncertainty and the information asymmetry, the game exhibits some new interesting features, such as the total information uncertainty can counteract or improve the first-mover advantage according to the value of the quantum entanglement. What's more, this general model will be helpful for the government to reduce the abuses of oligopolistic competition and to improve the economic efficiency.
Received: 17 August 2012      Published: 04 March 2013
PACS:  03.67.-a (Quantum information)  
  02.50.Le (Decision theory and game theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/120303       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/120303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xia
HU Cheng-Zheng
[1] D A Meyer 1999 Phys. Rev. Lett. 82 1052
[2] Eisert J, Wilkens M and Lewenstein M 1999 Phys. Rev. Lett. 83 3077
[3] Li H, Du J F and Massar S 2002 Phys. Lett. A 306 73
[4] Lo C F and Kiang D 2004 Phys. Lett. A 321 94
[5] Du J F, Li H and Ju C Y 2003 Phys. Rev. E 68 016124
[6] Qin G, Chen X, Sun M et al 2005 J. Phys. A: Math. Theor. 38 4247
[7] Chen X, Qin G, Zhou X Y et al 2005 Chin. Phys. Lett. 22 1033
[8] Lo C F and Kiang D 2003 Phys. Lett. A 318 333
[9] Lo C F and Kiang D 2005 Phys. Lett. A 346 65
[10] Wang X, Yang X H, Miao L et al 2007 Chin. Phys. Lett. 24 3040
[11] Benjamin S C and Hayden P M 2001 Phys. Rev. A 64 030301
[12] Lo C F and Kiang D 2003 Europhys. Lett. 64 592
[13] Qin G, Chen X, Sun M et al 2005 Phys. Lett. A 340 78
[14] Li Y, Qin G, Zhou X Y et al 2006 Phys. Lett. A 355 447
[15] Khan S, Ramzan M and Khan M K 2010 Chin. Phys. Lett. 27 080302
[16] Li S B 2011 J. Phys. A: Math. Theor. 44 295302
[17] Sekiguchi Y, Sakahara K and Sato T 2010 J. Phys. A: Math. Theor. 43 145303
[18] Zhu X and Kuang L M 2007 J. Phys. A: Math. Theor. 40 7729
[19] Zhu X and Kuang L M 2008 Commun. Theor. Phys. 49 111
[20] Khan S, Ramzan M and Khan M K 2010 J. Phys. A: Math. Theor. 43 375301
[21] Khan S and Khan M K 2011 Chin. Phys. Lett. 28 070202
[22] Guo H, Zhang J and Koehler G J 2008 Desion Support Syst. 46 318
[23] Du J F, Li H, Xu X et al 2002 Phys. Rev. Lett. 88 137902
[24] Du J F, Ju C Y and Li H 2005 J. Phys. A: Math. Theor. 38 1559
[25] Gibbons R 1992 Game Theory for Applied Economists (Princeton NJ: Princeton University)
Bierman H S Fernandez L 1998 Game Theory with Economic Applications 2nd edn (Reading, MA: Sddison-Wesley)
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 120303
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 120303
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 120303
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 120303
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 120303
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 120303
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 120303
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 120303
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 120303
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 120303
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 120303
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 120303
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 120303
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 120303
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 120303
Viewed
Full text


Abstract