Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 118103    DOI: 10.1088/0256-307X/29/11/118103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Orientation and Structure of Controllable GaAs Nanowires Grown on GaAs (311)B Substrates by Molecular Beam Epitaxiy
ZHAO Zhi-Fei, LI Xin-Hua**, WEN Long, GUO Hao-Min, BU Shao-Jiang, WANG Yu-Qi
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
ZHAO Zhi-Fei, LI Xin-Hua, WEN Long et al  2012 Chin. Phys. Lett. 29 118103
Download: PDF(1032KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract GaAs nanowires (NWs) are grown on GaAs (311)B substrates by gold assisted molecular beam epitaxy technology. Combined scanning and transmission electron microscopy analyses, the crystallographic orientations of NWs are studied. It is found that crystallographic orientations of NWs are closely related to their crystal structures: NWs of zinc blende structure grow along ?001? directions and NWs of wurtzite structure grow along ?0001? directions. The influence of impinging Ga flux on morphology and crystal structure of the NWs is also discussed. It is observed that NWs prefer to grow along zinc blende ?001? directions at lower Ga flux, while NWs tend to grow along the wurtzite ?0001? directions with only a small portion along the zinc blende ?001? direction at a higher Ga flux. The control of crystal structure and orientation of NWs can be achieved effectively by changing the Ga flux.
Received: 20 March 2012      Published: 28 November 2012
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.07.Gf (Nanowires)  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/118103       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/118103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Zhi-Fei
LI Xin-Hua
WEN Long
GUO Hao-Min
BU Shao-Jiang
WANG Yu-Qi
[1] Appenzeller J, Knoch J, Bjork M T, Riel H, Schmid H and Riess W 2008 IEEE Trans. Electron Devices 55 2827
[2] Zhu Y G, Dou X C, Huang X H, Li L and Li G H 2006 J. Phys. Chem. B 110 26189
[3] Li S S, Huang J Z and Feng X P 2010 Acta Phys. Sin. 59 5839 (in Chinese)
[4] M C Plante and R R LaPierre 2008 J. Cryst. Growth 310 356
[5] Liu L, Wen Y H and Tian H C 2010 Acta Phys. Sin. 59 1952 (in Chinese)
[6] J C Harmand, G Patriarche, N Péré-Laperne, M N Mérat-Combes, L Travers and F Glas 2005 Appl. Phys. Lett. 87 203101
[7] Ghosh S C, Kruse P and LaPierre R R 2009 Nanotechnology 20 115602
[8] Shtrikman H, Popovitz-Biro R, Kretinin A and Heiblum M 2009 Nano Lett. 9 215
[9] Wen L, Zhao Z F, Li X H, Shen Y F, Guo H M et al 2011 Appl. Phys. Lett. 99 143116
[10] Soci C, Bao X, Aplin David P R and Wang D 2008 Nano Lett. 8 4275
[11] Ikejiri K, Sato T, Yoshida H, Hiruma K Motohisa J Hara S and Fukui T 2008 Nanotechnology 19 265604
[12] Persson A I, Ohlsson B J, Jeppesen S and Samuelson L 2004 J. Cryst. Growth 272 167
[13] Wu Z H, Mei X, D Kim, M Blumin, H E Ruda 2003 Appl. Phys. Lett. 83 3368
[14] Tchernycheva M, Harmand J C, Patriarche G, Travers L and Cirlin G E 2006 Nanotechnology 17 4025
[15] Plante M C and LaPierre R R 2006 J. Cryst. Growth 286 394
[16] Plante M C and LaPierre R R 2008 Nanotechnology 19 495603
[17] Li X H, Guo H M, Yin Z J, Shi T F, Wen L, Zhao Z F et al 2011 J. Cryst. Growth 324 82
[18] Czaban J A, Thompson D A and LaPierre R R 2009 Nano Lett. 9 148
[19] Colombo C, Hei? M, Gr?tzel M and Morral A F I 2009 Appl. Phys. Lett. 94 173108
[20] Kayes B M, Atwater H A and Lewis N S 2005 J. Appl. Phys. 97 114302
[21] McMahon M I and Nelmes R J 2005 Phys. Rev. Lett. 95 215505
[22] Ma X L, Zhu Y L and Zhang Z 2002 Philos. Mag. Lett. 82 461
[23] Glas F, Harmand J C and Patriarche G 2007 Phys. Rev. Lett. 99 146101
Related articles from Frontiers Journals
[1] Chi Ding, Junjie Wang, Yu Han, Jianan Yuan, Hao Gao, and Jian Sun. High Energy Density Polymeric Nitrogen Nanotubes inside Carbon Nanotubes[J]. Chin. Phys. Lett., 2022, 39(3): 118103
[2] Xunheng Ye , Jiawei Shen , Xiangming Tao , Gaoxiang Ye , and Bo Yang. Au Films Composed of Nanoparticles Fabricated on Liquid Surfaces for SERS[J]. Chin. Phys. Lett., 2021, 38(3): 118103
[3] Shuo Yang, Zhenpeng Hu, Weihai Wang, Peng Cheng, Lan Chen, and Kehui Wu. Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111)[J]. Chin. Phys. Lett., 2020, 37(9): 118103
[4] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates *[J]. Chin. Phys. Lett., 0, (): 118103
[5] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates[J]. Chin. Phys. Lett., 2020, 37(6): 118103
[6] Li Dong, Aiwei Wang, En Li, Qin Wang, Geng Li, Qing Huan, Hong-Jun Gao. Formation of Two-Dimensional AgTe Monolayer Atomic Crystal on Ag(111) Substrate[J]. Chin. Phys. Lett., 2019, 36(2): 118103
[7] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 118103
[8] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber[J]. Chin. Phys. Lett., 2018, 35(8): 118103
[9] Bahram Khoshnevisan, Mohammad Bagher Marami, Majid Farahmandjou. Fe$^{3+}$-Doped Anatase TiO$_{2}$ Study Prepared by New Sol-Gel Precursors[J]. Chin. Phys. Lett., 2018, 35(2): 118103
[10] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 118103
[11] Zhi-Gang Wang, Fei Pang. Poisoning of MoO$_{3}$ Precursor on Monolayer MoS$_{2}$ Nanosheets Growth by Tellurium-Assisted Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2017, 34(8): 118103
[12] Zhu-Liang Wang, Hui Ma, Fang Wang, Min Li, Li-Guo Zhang, Xiao-Hong Xu. Controllable Synthesis and Magnetic Properties of Monodisperse Fe$_{3}$O$_{4}$ Nanoparticles[J]. Chin. Phys. Lett., 2016, 33(10): 118103
[13] WU Dong-Xu, CHENG Hong-Bin, ZHENG Xue-Jun, WANG Xian-Ying, WANG Ding, LI Jia. Fabrication and Piezoelectric Characterization of Single Crystalline GaN Nanobelts[J]. Chin. Phys. Lett., 2015, 32(10): 118103
[14] ZHAO Mei, DONG Li-Feng, LI Cheng-Dong, YU Li-Yan, LI Ping. A Facile Route to Cotton-Like BiOCl Nanomaterial with Enhanced Dye-Sensitized Visible Light Photocatalytic Efficiency[J]. Chin. Phys. Lett., 2015, 32(09): 118103
[15] FAN Xi, CHEN Hou-Peng, WANG Qian, WANG Yue-Qing, LV Shi-Long, LIU Yan, SONG Zhi-Tang, FENG Gao-Ming, LIU Bo. Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays[J]. Chin. Phys. Lett., 2015, 32(06): 118103
Viewed
Full text


Abstract