Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 116201    DOI: 10.1088/0256-307X/29/11/116201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
An Effective Solution for the Best Set of Beveling Parameters of the Cubic High-Pressure Tungsten Carbide Anvil
HAN Qi-Gang1**, ZHANG Qiang1, LI Ming-Zhe1, JIA Xiao-Peng2, LI Yue-Fen3, MA Hong-An2
1Roll-forging Research Institute, Jilin University, Changchun 130025
2National Lab of Superhard Materials, Jilin University, Changchun 130012
3College of Earth Sciences, Jilin University, Changchun 130061
Cite this article:   
HAN Qi-Gang, ZHANG Qiang, LI Ming-Zhe et al  2012 Chin. Phys. Lett. 29 116201
Download: PDF(889KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Determining the best set of beveling parameters is an advantageous characteristic of the geometrical conditions for a cubic high-pressure tungsten carbide (WC) anvil, but it is almost impossible to deduce experimentally (much affected by defects in the material). In order to remove the affection of defects in materials, we investigate computational stress analyses in different beveling parameters of WC anvils by the finite element method. The results indicate that the rate of cell pressure transmitting and failure crack in the WC anvil monotonically increases with the bevel angle from 42° to 45°. Furthermore, there are two groups of actual users of beveled anvils, one group preferring 41.5°, which can decrease the rate of failure crack in WC anvil, the other group preferring 42°, which can increase the rate of cell pressure transmitting. This work would give an effective solution to solve the problem of the design of a cubic high-pressure WC anvil experimentally and will greatly help to improve the cubic high-pressure WC anvil type high pressure techniques.
Received: 09 June 2012      Published: 28 November 2012
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  07.05.Tp (Computer modeling and simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/116201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/116201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAN Qi-Gang
ZHANG Qiang
LI Ming-Zhe
JIA Xiao-Peng
LI Yue-Fen
MA Hong-An
[1] Fan D W et al 2011 Chin. Phys. Lett. 28 126103
[2] Tang L Y et al 2010 Chin. Phys. Lett. 27 016402
[3] Lü S J et al 2009 Acta Phys. Sin. 58 6852 (in Chinese)
[4] Liebermann R C 2011 High Press. Res. 31 493
[5] Sung C M 1997 High Temp. High Press. 29 253
[6] Abbaschian R et al 2005 Diam. Relat. Mater. 14 1916
[7] Han Q G et al 2011 Cryst. Growth Design 11 1000
[8] Han Q G et al 2009 Rev. Sci. Instrum. 80 096107
[9] Li R et al 2007 High Press. Res. 27 249
[10] Han Q G et al 2010 Rev. Sci. Instrum. 81 123901
[11] Getting I C et al 1993 Pure Appl. Geophys. 141 545
[12] Levitas V I and Zarechnyy O M 2007 Appl. Phys. Lett. 91 141919
[13] Jiang C Y et al 2006 Elasticity Theory and Finite Element Method Science (Beijing: Science Press) (in Chinese)
[14] Han Q G et al 2009 High Press. Res. 29 457
[15] Forsgren K F and Drickamer H G 1965 Rev. Sci. Instrum. 36 1709
[16] Bruno M S and Dunn K J 1984 Rev. Sci. Instrum. 55 940
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 116201
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 116201
[3] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 116201
[4] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 116201
[5] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 116201
[6] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 116201
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 116201
[8] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 116201
[9] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 116201
[10] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 116201
[11] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 116201
[12] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 116201
[13] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 116201
[14] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 116201
[15] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 116201
Viewed
Full text


Abstract