Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 115201    DOI: 10.1088/0256-307X/29/11/115201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Solution of Magnetohydrodynamic Oscillations in Electrolytes with Ion-Neutral Collisions
LIU Yuan-Tao1,2**, ZHAO Hua1, LI Lei1, FENG Yong-Yong1
1Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190
2Graduate University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
LIU Yuan-Tao, ZHAO Hua, LI Lei et al  2012 Chin. Phys. Lett. 29 115201
Download: PDF(490KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The single-fluid Magnetohydrodynamic (MHD) equations for electrolytes in the presence of a magnetic field are derived from multi-fluid MHD equations with ion-neutral collisions in partially ionized conductive fluids. The dispersion relationship of MHD waves is also investigated, which is different from that for plasmas or liquid metals. Based on the equations, we find that MHD waves are dispersive in electrolytes, and the critical frequencies for excitation of Alfven waves vary with magnetic field or conductivity, so the exciting of MHD waves is severely restricted in electrolytes with relatively low conductivity except at an extremely low frequency or when it is permeated by a considerably strong ambient magnetic field. These theories are applied to seawater to estimate the magnetic field vibration caused by the large-scale motion of seawater (e.g., ocean currents or tides). It is found that high frequency waves are dampened severely in seawater, while low frequency waves can propagate over a long distance without much attenuation.
Received: 11 April 2012      Published: 28 November 2012
PACS:  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  91.50.Iv (Marine magnetics and electromagnetics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/115201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/115201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yuan-Tao
ZHAO Hua
LI Lei
FENG Yong-Yong
[1] Nishigaki K, Sha C W, Takeda M, Peng Y, Zhou K, Yang A, Suyama D, Qing Q J, Yan L, Kiyoshi T and Wada H 2000 Cryogenic 40 353
[2] Takeda M 2010 Adv. Sci. Technol. 75 208
[3] Bondarenko N F, Gak E Z and Gak M Z 2002 J. Eng. Phys. Thermophys. 75 1234
[4] Sawaya E, Ghaddar N and Chaaban F 2002 Int. J. Eng. Sci. 40 2041
[5] Chandaneswar M 2012 Chin. Phys. Lett. 29 014701
[6] Xu J Land Jin S X 1981 Plasma Physics (Beijing: Atomic Energy Press) p 179 (in Chinese)
[7] Gak M Z and Gak E Z Sov. Phys. 1973 17 1595
[8] Thomas Z F 1976 Electrochim. Acta 21 21
[9] Wang Q, He J C and Iwai K 2002 Prog. Nat. Sci. 12 1026 (in Chinese)
[10] Khodachenko M L, Arber T D and Rucker H O 2004 Astron. Astrophys. 422 1073
[11] Forteza P, Oliver R, Ballester J L and Khodachenko M L 2007 Astron. Astrophys. 461 731
[12] Braginskii S I 1965 Reviews of Plasma Physics (New York: Consultants Bureau)
[13] Zheng H N, Zhang Y Y, Wang S, Wang C B and Li Y 2006 Chin. Phys. Lett. 23 399
[14] Li B, Zheng H N and Wang S 2002 Chin. Phys. Lett. 19 1639
[15] Zheng H N, Wang S, S T Wu and Li B 2001 Chin. Phys. Lett. 18 1624
[16] Soler R, Oliver R and Ballester J L 2009a Astrophys. J. 699 1553
[17] Vranjes J, Poedts S and Pandey B P 2008 Astron. Astrophys. 478 553
[18] Zaqarashvili T V, Khodachenko M K and Rucker H O 2011 Astron. Astrophys. 529 A82
[19] Tyler H R and Maus S 2003 Science 299 239
Related articles from Frontiers Journals
[1] Tong Liu , Lai Wei , Feng Wang, and Zheng-Xiong Wang . Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 115201
[2] Jian-Qiang Xu, Xiao-Dong Peng , Hong-Peng Qu , Guang-Zhou Hao . Stabilization of Short Wavelength Resistive Ballooning Modes by Ion-to-Electron Temperature and Gradient Ratios in Tokamak Edge Plasmas *[J]. Chin. Phys. Lett., 0, (): 115201
[3] Jian-Qiang Xu, Xiao-Dong Peng , Hong-Peng Qu , Guang-Zhou Hao . Stabilization of Short Wavelength Resistive Ballooning Modes by Ion-to-Electron Temperature and Gradient Ratios in Tokamak Edge Plasmas[J]. Chin. Phys. Lett., 2020, 37(6): 115201
[4] Tiegang Fang, Fujun Wang. Viscous Slip MHD Flow over a Moving Sheet with an Arbitrary Surface Velocity[J]. Chin. Phys. Lett., 2018, 35(10): 115201
[5] Yong-Jian Jin, Hui-Nan Zheng, Zhen-Peng Su. Propagation and Damping of Two-Fluid Magnetohydrodynamic Waves in Stratified Solar Atmosphere[J]. Chin. Phys. Lett., 2018, 35(7): 115201
[6] Qi-Jia Guo, Guo-Hua Ni, Lin Li, Qi-Fu Lin, Yan-Jun Zhao, Si-Yuan Sui, Hong-Bing Xie, Wen-Xue Duan, Yue-Dong Meng. Dynamics of Ring-to-Volume Discharge Transition in $H$ Mode in Inductively Coupled Plasma Torches at Atmospheric Pressure[J]. Chin. Phys. Lett., 2018, 35(7): 115201
[7] Yan-Liang Ji, Ben-Mou Zhou, Ya-Dong Huang. Mechanism of Electromagnetic Flow Control Enhanced by Electro-Discharge in Water[J]. Chin. Phys. Lett., 2018, 35(5): 115201
[8] Lu-Lu Li, Yue-Song Jia, Qi-Zhi Sun, Wei Liu, Zheng-Fen Liu, Wei-Dong Qin, Jun Li, Yuan Chi, Xian-Jun Yang. Formation Process of Magnetized Fusion Target on the YingGuang 1 Device[J]. Chin. Phys. Lett., 2016, 33(04): 115201
[9] Yi-Fan Yan, Zhong-Tian Wang, Zhi-Xiong He, Li-Ming Yu, Zhan-Hui Wang, Jia-Qi Dong, Hui-Dong Li, Hao Feng. Theoretical Analysis of the Frequency Jump in E-fishbone Experiments[J]. Chin. Phys. Lett., 2016, 33(01): 115201
[10] ZHAO Kai-Ge, WANG Li-Feng, YE Wen-Hua, WU Jun-Feng, LI Ying-Jun. Incompressible Magnetohydrodynamic Kelvin–Helmholtz Instability with Continuous Profiles[J]. Chin. Phys. Lett., 2014, 31(03): 115201
[11] ZHOU Yu-Fen, FENG Xue-Shang. A New Hybrid Numerical Scheme for Two-Dimensional Ideal MHD Equations[J]. Chin. Phys. Lett., 2012, 29(9): 115201
[12] LI Li, LIU Yue. Study on the Resistive Wall Instability Driven by Plasma Flow[J]. Chin. Phys. Lett., 2012, 29(7): 115201
[13] JI Zhen, **, ZHOU Yu-Fen, HOU Tian-Xiang . A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation[J]. Chin. Phys. Lett., 2011, 28(7): 115201
[14] G. A. Hoshoudy . Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(12): 115201
[15] FANG Tie-Gang, ZHANG Ji, YAO Shan-Shan. Slip Magnetohydrodynamic Viscous Flow over a Permeable Shrinking Sheet[J]. Chin. Phys. Lett., 2010, 27(12): 115201
Viewed
Full text


Abstract