Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 114207    DOI: 10.1088/0256-307X/29/11/114207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Large Signal Circuit Model of Two-Section Gain Lever Quantum Dot Laser
Ashkan Horri1**, Seyedeh Zahra Mirmoeini2, Rahim Faez3
1Young Researchers Club, Arak Branch, Islamic Azad University, Arak, Iran
2Department of Electrical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
3Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
Cite this article:   
Ashkan Horri, Seyedeh Zahra Mirmoeini, Rahim Faez 2012 Chin. Phys. Lett. 29 114207
Download: PDF(413KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An equivalent circuit model for the design and analysis of two-section gain lever quantum dot (QD) laser is presented. This model is based on the three level rate equations with two independent carrier populations and a single longitudinal optical mode. By using the presented model, the effect of gain lever on QD laser performances is investigated. The results of simulation show that the main characteristics of laser such as threshold current, transient response, output power and modulation response are affected by differential gain ratios between the two-sections.
Received: 20 July 2012      Published: 28 November 2012
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  78.67.Hc (Quantum dots)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/114207       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/114207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ashkan Horri
Seyedeh Zahra Mirmoeini
Rahim Faez
[1] Coldren L A and Corizne S W 1995 Diode Lasers Photonic Integrated Circuits (New York: John Wiley & Sons) chap 4 p 129
[2] Sugawara M 1999 Self-assembled InGaAs/GaAs Quantum Dots (Tokyo: Academic) chap 6 p 241
[3] Li Y, Naderi N A, Kovanis V and Lester L F 2010 IEEE Photon. J. 2 321
[4] Moore N and Lau K Y 1989 Appl. Phys. Lett. 55 936
[5] Mena P V, Kang S M and Detemple T A 1997 IEEE J. Lightwave. Technol. 15 717
[6] Yavari M H, Ahmadi V 2009 IEEE J. Sel. Top. Quantum Electron. 15 774
[7] Horri A, Faez R and Hoseini H R 2011 IEICE Electron. Express 8 245
[8] Yousefvand H R, Ahmadi V and Saghafi K 2010 IEEE J. Lightwave Technol.
[9] Mena P V 1998 PhD Dissertation (Chicago: University of Illinois)
[10] Horri A and Faez R 2011 Opt. Eng. 50 034202
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 114207
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 114207
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 114207
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 114207
[5] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 114207
[6] Ting Fu, Yu-Fei Wang, Xue-You Wang, Xu-Yan Zhou, Wan-Hua Zheng. Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser[J]. Chin. Phys. Lett., 2020, 37(4): 114207
[7] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 114207
[8] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 114207
[9] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 114207
[10] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 114207
[11] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 114207
[12] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 114207
[13] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 114207
[14] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 114207
[15] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 114207
Viewed
Full text


Abstract