Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 114201    DOI: 10.1088/0256-307X/29/11/114201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Field Tunable Multichannel Microwave Delay-Line Using a Piezoelectric-Piezomagnetic Superlattice
TANG Zheng-Hua, ZHANG Wei-Yi**
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
TANG Zheng-Hua, ZHANG Wei-Yi 2012 Chin. Phys. Lett. 29 114201
Download: PDF(459KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The microwave slow-light delay-line has broad applications in signal processing systems, and the tunable slow-light delay-line is particularly important for adjusting the timing of wave packets and phased array beam shapers. We propose to construct multichannel microwave slow-light delay-lines using piezoelectric (PMN-PT) and piezomagnetic (CoFe2O4) superlattices(PPS). The group velocity can be slowed down by a factor of 14612 (31554) and a delay bandwidth product (DBP) of 25(47) can be achieved for the first (second) channels with a sample length of 1 cm around 10GHz (21 GHz). Furthermore, a tunable time-delay from 590 ps (590ps) to 480ns (1052 ns) can be realized by flipping the magnetic domains using an external magnetic field. The nonreciprocal polaritonic bands also contain the basic building blocks for designing the compact microwave isolator.
Received: 23 May 2012      Published: 28 November 2012
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  77.65.-j (Piezoelectricity and electromechanical effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/114201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/114201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Zheng-Hua
ZHANG Wei-Yi
[1] Lukin M D and Imamo?lu A 2001 Nature 413 273
[2] Krauss T F 2007 J. Phys. D: Appl. Phys. 40 2666
[3] Toshihiko B B 2008 Nat. Photon. 2 465
[4] Miller D A B 2007 Phys. Rev. Lett. 99 203903
[5] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[6] Notomi M, Yamada K, Shinya A, Takahashi J, Takahashi C and Yokohama I 2001 Phys. Rev. Lett. 87 253902
[7] Gersen H, Karle T J, Engelen R J P, Bogaerts W, Korterik J P, van Hulst N F, Krauss T F and Kuipers L 2005 Phys. Rev. Lett. 94 073903
[8] Tanabe T, Nishiguchi K, Shinya A, Kuramochi E, Inokawa H, Hsu F C, Notomi M, Wu K, Yamada A M, Tsuchizawa T, Watanabe T, Shinojima H and Itabashi S 2007 Appl. Phys. Lett. 90 031115
[9] Vlasov Y A, O'Boyle M, Hamann H F and McNab S J 2005 Nature 438 65
[10] Savo S, Casse B D F, Lu W T and Sridhar S 2011 Appl. Phys. Lett. 98 171907
[11] Fujikake H, Kuki T, Kamoda H, Sato F and Nomoto T 2003 Appl. Phys. Lett. 83 1815
[12] Fetisov Y K and Srinivasana G 2005 Appl. Phys. Lett. 87 103502
[13] Feng M, Wang W, Li H B and Jia D C 2011 J. Mater. Chem. 21 10738
[14] Zhao J, Yin R C, Fan T, Lu M H, Chen Y F, Zhu Y Y, Zhu S N and Ming N B 2008 Phys. Rev. B 77 075126
[15] Srinivasan G 2010 Annu. Rev. Mater. Res. 40 153
[16] Nan C W 1994 Phys. Rev. B 50 6082
[17] Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes A L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A and Ramesh R 2004 Science 303 661
[18] Yokoyama S, Okamoto S and Funakubob H 2006 J. Appl. Phys. 100 054110
[19] Ye Z G 2008 Handbook of dielectric piezoelectric and ferroelectric materials Synthesis, Properties and Applications ( England: Woodhead Publishing in Materials) chap 4 p 142
[20] Liu Z X and Zhang W Y 2006 J. Phys.: Condens. Matter 18 9083
[21] Wang H, Zhu J, Lu N, Bokov A A, Ye Z G and Zhang X W 2006 Appl. Phys. Lett. 89 042908
[22] Torres T E, Roca A G, Morales M P, Ibarra A, Marquina C, Ibarra M R and Goya G F 2010 J. Phys.: Conf. Ser. 200 072101
[23] Bharat B 2004 Springer Handbook of Nanotechnology (Berlin: Springer) chap 47 p 1491
[24] Figotin A and Vitebskiy I 2003 Phys. Rev. B 67 165210
[25] Takeda H and John S 2008 Phys. Rev. A 78 023804
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 114201
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 114201
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 114201
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 114201
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 114201
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 114201
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 114201
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 114201
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 114201
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 114201
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 114201
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 114201
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 114201
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 114201
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 114201
Viewed
Full text


Abstract