Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 114102    DOI: 10.1088/0256-307X/29/11/114102
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Compact Ultra-wideband Microstrip Antenna with Metamaterials
XIONG Han**, HONG Jin-Song, ZHU Qing-Yi, JIN Da-Lin
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
XIONG Han, HONG Jin-Song, ZHU Qing-Yi et al  2012 Chin. Phys. Lett. 29 114102
Download: PDF(1301KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An improved compact ultra-wideband (UWB) microstrip antenna with metamaterials is proposed. The total size is slightly reduced and the measured impedance bandwidth operates from 3.84 to 22.77 GHz for a return loss of less than ?10 dB. Compared with the original patch antenna, the bandwidth of this antenna is about six times broader. Moreover, the antenna has an average gain of 6.2 dB, which is 1.2 dB larger than the original one. Both strong radiation in the horizontal direction and practical characteristics are observed. Thus, this antenna would have some specific applications for UWB wireless communications in the future.
Received: 21 May 2012      Published: 28 November 2012
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  84.40.Ba (Antennas: theory, components and accessories)  
  84.40.Az (Waveguides, transmission lines, striplines)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/114102       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/114102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIONG Han
HONG Jin-Song
ZHU Qing-Yi
JIN Da-Lin
[1] Sim C Y D, Chung W T and Lee C H 2010 IEEE Antennas Wireless Propag. Lett. 9 63
[2] Yang J and Kishk A 2012 IEEE Trans. Antennas Propag. 60 1214
[3] Li L, Zhou Z L, Hong J S and Wang B Z 2011 Electron. Lett. 47 894
[4] Chen W L, Wang G M and Zhang C X 2009 IEEE Trans. Antennas Propag. 57 2176
[5] Ooi B L, Qin S and Leong M S 2002 IEEE Trans. Antennas Propag. 50 1391
[6] Matin M A, Sharif B S and Tsimenidis C C 2007 IEEE Trans. Antennas Propag. 55 2385
[7] Yousefi L, Mohajer-Iravani B and Ramahi O M 2007 IEEE Antennas Wireless Propag. Lett. 6 289
[8] Engheta N and Ziolkowski R W 2006 MetaMater.: Phys. Eng. Explorations (Hoboken: John Wiley & Sons) 60
[9] Jiang W, Gong S X and Cui S 2011 Microw. Opt. Technol. Lett. 53 1700
[10] Chung K, Yun T and Choi J 2004 Electron. Lett. 40 1038
[11] Palandoken M, Grede A and Henke H Feb 2009 IEEE Trans. Antennas Propag. 57 331
[12] Xiong H, Hong J S, Jin D L and Zhang Z M 2012 Chin. Phys. B 21 094101
[13] Zhao D and Ding Y G 2012 Chin. Phys. B 21 094102
[14] Liu T, Cao X Y, Gao J, Zheng Q R and Li W Q 2012 Acta Phys. Sin. 61 184101 (in Chinese)
[15] Li L W, Li Y N, Yeo T S, Mosig J R and Martin, O J F 2010 Appl. Phys. Lett. 96 164101
[16] Matsunaga N, Sanada A and Kubo H 2006 IEICE Trans. Fundamentals E89C 1276
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 114102
[2] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 114102
[3] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 114102
[4] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 114102
[5] Guo-Guo Wei, Chong Miao, Hao-Chong Huang, Hua Gao. Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with Dirac Cones[J]. Chin. Phys. Lett., 2019, 36(3): 114102
[6] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 114102
[7] Xiao-Xiao Zhang, Zhen-Sen Wu, Xiang Su. Influence of Breaking Waves and Wake Bubbles on Surface-Ship Wake Scattering at Low Grazing Angles[J]. Chin. Phys. Lett., 2018, 35(7): 114102
[8] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 114102
[9] Jin-Xing Li, Min Zhang, Peng-Bo Wei. Effects of Breaking Waves on Composite Backscattering from Ship-Ocean Scene[J]. Chin. Phys. Lett., 2017, 34(9): 114102
[10] Mohammad Hosein Fakheri, Hooman Barati, Ali Abdolali. Carpet Cloak Design for Rough Surfaces[J]. Chin. Phys. Lett., 2017, 34(8): 114102
[11] Xiao-Jing Zhang, Xi Wu, Ya-Dong Xu. Controlling of the Polarization States of Electromagnetic Waves Using Epsilon-near-Zero Metamaterials[J]. Chin. Phys. Lett., 2017, 34(8): 114102
[12] D. Basandrai, R. K. Bedi, A. Dhami, J. Sharma, S. B. Narang, K. Pubby, A. K. Srivastava. Radiation Losses in the Microwave X Band in Al-Cr Substituted Y-Type Hexaferrites[J]. Chin. Phys. Lett., 2017, 34(4): 114102
[13] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 114102
[14] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Yu Huang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. An Open Rectangular Waveguide Grating for Millimeter-Wave Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(09): 114102
[15] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. Design of a Novel Folded Waveguide for 60-GHz Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(04): 114102
Viewed
Full text


Abstract