Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 110301    DOI: 10.1088/0256-307X/29/11/110301
GENERAL |
Quantum Information Theoretical Analysis of Quantum Secret Sharing
XIAO He-Ling**, GUO Wang-Mei, WANG Xiao
State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071
Cite this article:   
XIAO He-Ling, GUO Wang-Mei, WANG Xiao 2012 Chin. Phys. Lett. 29 110301
Download: PDF(453KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum secret sharing (QSS) schemes are analyzed from an information theoretical perspective centered on the Araki–Lieb inequality. Based on this inequality, mathematical characterizations of QSS schemes and quantum error-correcting codes (QECCs) are given. Furthermore, we present a proof of the relation between QSS schemes and QECCs. This information theoretic description of QSS schemes is used to derive the quantum Singleton bound.
Received: 02 July 2012      Published: 28 November 2012
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.-a (Quantum information)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/110301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/110301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIAO He-Ling
GUO Wang-Mei
WANG Xiao
[1] Hillery M, Bu?ek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[2] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[3] Gottesman D 2000 Phys. Rev. A 61 042311
[4] Imai H, Muller-Quade J, Nascimento A C A, Tuyls P and Winter A 2005 Quantum Inf. Comput. 5 69
[5] Rietjens K, Schoenmakers B and Tuyls P 2005 Prov. IEEE Int. Symp. Inf. Theory (Adelaide Australia 4–9 September 2005) p 1598
[6] Sarvepalli P 2009 Phys. Rev. A 80 022321
[7] Zhang Z R, Liu W T and Li C Z 2011 Chin. Phys. B 20 050309
[8] Yu Y F and Zhang Z M 2009 Chin. Phys. B 18 1342
[9] Li B K, Yang Y G and Wen Q Y 2009 Chin. Phys. Lett. 26 010302
[10] Li C Y and Li Y S 2011 Chin. Phys. Lett. 28 020304
[11] Han L F, Liu Y M and Zhang Z J 2006 Chin. Phys. Lett. 23 1988
[12] Gaertner S, Kurtsiefer C, Bourennance M and Weinfurter H 2007 Phys. Rev. Lett. 98 020503
[13] Sarvepalli P 2011 Phys. Rev. A 83 042303
[14] Sarvepalli P 2011 Phys. Rev. A 83 042324
[15] Araki H and Lieb E H 1970 Commun. Math. Phys. 18 160
[16] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp 513–519
[17] Grassl M, Beth T and Pellizzari T 1997 Phys. Rev. A 56 33
[18] Cerf N J and Cleve R 1997 Phys. Rev. A 56 1721
[19] Cai Q Y 2004 Chin. Phys. Lett. 21 1189
[20] Knill E and Laflamme R 1997 Phys. Rev. A 55 900
[21] Preskill J http://www.theory.caltch.edu/people/preskill/ph219
[22] Knill E, Laflamme R and Viola L 2000 Phys. Rev. Lett. 84 2525
[23] Kribs D W and Spekkens R W 2006 Phys. Rev. A 74 042329
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 110301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 110301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 110301
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 110301
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 110301
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 110301
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 110301
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 110301
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 110301
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 110301
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 110301
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 110301
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 110301
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 110301
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 110301
Viewed
Full text


Abstract