Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 109401    DOI: 10.1088/0256-307X/29/10/109401
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Normal-Angle Dependence of the Interaction between Radiation Belt Electrons and Fast Magnetosonic Waves
ZHU Hui, SU Zhen-Peng, ZHENG Hui-Nan**
CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026
Cite this article:   
ZHU Hui, SU Zhen-Peng, ZHENG Hui-Nan 2012 Chin. Phys. Lett. 29 109401
Download: PDF(529KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fast magnetosonic (MS) waves have been suggested to contribute significantly to radiation belt electron dynamics via Landau resonance and transit time scattering. The corresponding quasi-linear diffusion coefficients in pitch angle, energy and particularly cross-pitch-angle-energy are calculated from the gyro-averaged test-particle simulations. It is found that the cross diffusion coefficient is an effective indicator to differentiate between the contributions of resonant and non-resonant mechanisms. Furthermore, the dependence of diffusion coefficients on the normal angle of MS waves are parametrically investigated. Numerical results show that the increasing normal angle can lead to the shrinking of the Landau resonance region and the expansion of the transit-time scattering region. With the increasing normal angle, the pitch angle diffusion coefficients decrease significantly (by about two orders of magnitude), while the other two diffusion coefficients have a relatively limited decrease (within one order of magnitude). For arbitrary normal angles, the magnitude of cross diffusion coefficients is comparable to the other diffusion coefficients, suggesting that the cross diffusion is indispensable in the kinetic simulation works.
Received: 15 March 2012      Published: 01 October 2012
PACS:  94.20.wj (Wave/particle interactions)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  94.30.Lr (Magnetic storms, substorms)  
  94.30.Hn (Energetic trapped particles)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/109401       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/109401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Hui
SU Zhen-Peng
ZHENG Hui-Nan
[1] Friedel R H W, Reeves G D and Obara T 2002 J. Atmos. Sol. Terr. Phys. 64 265
[2] Su Z P, Xiao F L, Zheng H N and Wang S 2011 Geophys. Res. Lett. 38 L06106
[3] Xiao F L, Zhao H and He H Y 2005 Chin. Phys. Lett. 22 2451
[4] Xiao F L and He H Y 2006 Chin. Phys. Lett. 23 267
[5] Zong Q G et al 2009 J. Geophys. Res. 114 A10204
[6] Zong Q G et al 2007 Geophys. Res. Lett. 34 L12015
[7] Xiao F L et al 2007 Chin. Phys. Lett. 24 294
[8] Yang B et al 2011 J. Geophys. Res. 116 A03207
[9] Xiao F L, Tian T and Chen L X 2009 Chin. Phys. Lett. 26 059402
[10] Xiao F L, Su Z P, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A10217
[11] Summers D R and Thorne R M 2003 J. Geophys. Res. 108(A4) 1143
[12] Li W, Shprits Y Y and Thorne R M 2007 J. Geophys. Res. 112 A10220
[13] Meredith N P, Horne R B and Anderson R R 2008 J. Geophys. Res. 113 A06213
[14] Russell C T, Holzer R E and Smith E J 1970 J. Geophys. Res. 75 755
[15] Horne R B et al 2007 Geophys. Res. Lett. 34 L17107
[16] Bortnik J and Thorne R M 2010 J. Geophys. Res. 115 A07213
[17] Kennel C F and Engelmann F 1966 Phys. Fluids 9 2377
[18] Su Z P, Zheng H N and Xiong M 2009 Chin. Phys. Lett. 26 039401
[19] Su Z P, Zheng H N and Wang S 2009 J. Geophys. Res. 114 A07201
[20] Horne R B and Thorne R M 1998 Geophys. Res. Lett. 25 3011
[21] Su Z P, Zheng H N and Wang S 2009 J. Geophys. Res. 114 A08202
[22] Su Z P, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A05219
[23] Su Z P, Xiao F L, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A10249
[24] Summers D R, Thorne R M and Xiao F L 1998 J. Geophys. Res. 103 20 487
[25] Su Z P, Xiao F L, Zheng H N and Wang S 2011 J. Geophys. Res. 116 A04205
[26] Su Z P, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A06203
[27] Xiao F L, Su Z P, Zheng H N and Wang S 2009 J. Geophys. Res. 114 A03201
[28] Xiao F L, Su Z P, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A05216
[29] Xiao F L, Chen L X and He Y H 2011 J. Atmos. Sol. Terr. Phys. 73 88
[30] Subbotin D, Shprits Y and Ni B 2010 J. Geophys. Res. 115 A03205
[31] Tao X, Albert J M and Chan A A 2009 J. Geophys. Res. 114 A02215
[32] Tao X, Thorne R M, Li B, Meredith N P and Horne R B 2010 J. Geophys. Res. 116 A04229
[33] Albert J M and Young S L 2005 Geophys. Res. Lett. 32 L14110
[34] Su Z P, Xian F L, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A09208
[35] Su Z P, Zheng H N, Chen L X and Wang S 2011 J. Atmos. Sol. Terr. Phys. 73 95
[36] Xiao F L, Zhang S, Su Z P, He Z G and Tang L J 2012 Geophys. Res. Lett. 39 L03103
[37] Denton R E, Goldstein J and Menietti J D 2002 Geophys. Res. Lett. 29 2205
[38] Xiao F L, Zhou Q H, He Z G and Tang L J 2012 J. Geophys. Res. 117 A06208
[39] Stoer J and Bulirsch R 1980 Introduction to Numerical Analysis (New York: Springer-Verlag)
Related articles from Frontiers Journals
[1] ZHU Hui, SU Zhen-Peng, ZHENG Hui-Nan. Counter-Streaming Interaction between Fast Magnetosonic Wave and Radiation Belt Electrons[J]. Chin. Phys. Lett., 2013, 30(5): 109401
[2] XIAO Fu-Liang, **, HE Zhao-Guo ZHANG Sai, SU Zhen-Peng, CHEN Liang-Xu, . Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves[J]. Chin. Phys. Lett., 2011, 28(3): 109401
[3] ZHANG Sai, XIAO Fu-Liang** . Chorus-Driven Outer Radiation Belt Electron Dynamics at Different L-Shells[J]. Chin. Phys. Lett., 2010, 27(12): 109401
[4] ZHOU Qing-Hua, HE Yi-Hua, HE Zhao-Guo, YANG Chang. Propagation Characteristics of Whistler-Mode Chorus during Geomagnetic Activities[J]. Chin. Phys. Lett., 2010, 27(5): 109401
[5] SU Zhen-Peng, ZHENG Hui-Nan. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(12): 109401
[6] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu, SU Zhen-Peng, ZHENG Hui-Nan. Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(11): 109401
[7] SU Zhen-Peng, ZHENG Hui-Nan, XIONG Ming. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2009, 26(3): 109401
[8] ZHOU Qing-Hua, JIANG Bin, SHI Xiang-Hua, LI Jun-Qiu. Whistler-Mode Waves Growth by a Generalized Relativistic Kappa-Type Distribution[J]. Chin. Phys. Lett., 2009, 26(2): 109401
[9] SU Zhen-Peng, ZHENG Hui-Nan. Simulation of Resonant Interaction between Energetic Electrons and Whistler-Mode Chorus in the Outer Radiation Belt[J]. Chin. Phys. Lett., 2008, 25(12): 109401
[10] ZHENG Hui-Nan, SU Zhen-Peng, XIONG Ming. Pitch Angle Distribution Evolution of Energetic Electrons by Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2008, 25(9): 109401
Viewed
Full text


Abstract