Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 107402    DOI: 10.1088/0256-307X/29/10/107402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A New Bipolar Type Transistor Created Based on Interface Effects of Integrated All Perovskite Oxides
XIA Feng-Jin1,2, WU Hao3, FU Yue-Ju1,4, XU Bo1, YUAN Jie5, ZHU Bei-Yi1, QIU Xiang-Gang1, CAO Li-Xin1, LI Jun-Jie1, JIN Ai-Zi1, WANG Yu-Mei1, LI Fang-Hua1, LIU Bao-Ting4, XIE Zhong2, ZHAO Bai-Ru1**
1National Laboratory for Superconductivity, Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physics and Microelectronic Science, Hunan University, Changsha 410082
3School of Physics and Technology, Wuhan University, Wuhan 430072
4College of Physics Science and Technology, Hebei University, Baoding 071002
5Department of Materials Science, Wuhan University of Science and Technology, Wuhan 430081
Cite this article:   
XIA Feng-Jin, WU Hao, FU Yue-Ju et al  2012 Chin. Phys. Lett. 29 107402
Download: PDF(1227KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Oxide transistor is the basic device to construct the oxide electronic circuit that is the backing to develop integrated oxide electronics with high efficiency and low power consumption. By growing the perovskite oxide integrated layers and tailoring them to lead semiconducting functions at their interfaces, the development of oxide transistors may be able to perform. We realize a kind of p-i-n type integrated layers consisting of an n-type cuprate superconductor, p-type colossal magnetoresistance manganite, and a ferroelectric barrier (i). From this, bipolar transistors were fabricated at the back-to-back p-i-n junctions, for which the Schottky emission and p-n junction barriers, as well as the ferroelectric polarization, were integrated into the interfaces to control the transport properties; a preliminary but distinct current gain greater than 1.6 at input current of microampers order was observed. These results present a real possibility to date for developing bipolar all perovskite oxide transistors.

Received: 18 September 2012      Published: 01 October 2012
PACS:  85.30.Pq (Bipolar transistors)  
  74.72.-h (Cuprate superconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/107402       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/107402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIA Feng-Jin
WU Hao
FU Yue-Ju
XU Bo
YUAN Jie
ZHU Bei-Yi
QIU Xiang-Gang
CAO Li-Xin
LI Jun-Jie
JIN Ai-Zi
WANG Yu-Mei
LI Fang-Hua
LIU Bao-Ting
XIE Zhong
ZHAO Bai-Ru

[1] Heyman P M and Heilmeier G H 1966 Proc. IEEE 54 842
[2] Mathews S, Ramesh R, Venkatesan T and Benedetto J 1997 Science 276 238
[3] Mannhart J, Schlom D G, Bednorz J G and Müller K A 1991 Phys. Rev. Lett. 67 2099
[4] Grekhov I, Delimcva L, Liniichuk I, Mashovets D and Veselovsky I 2003 Physica E 17 640
[5] Yajima T, Hikita Y and Hwang H Y 2011 Nat. Mater. 10 198
[6] Mannhart J, Kleinsasser A, Ströbel J and Baratoff A 1993 Physica C 216 401
[7] Blom P W M, Wolf R M, Cillessen J F M and Krijn M P C M 1994 Phys. Rev. Lett. 73 2107
[8] Watanabe Y 1998 Phys. Rev. B 57 R5563
[9] Sugiura M, Uragou K, Tachiki M and Kobayashi T 2001 J. Appl. Phys. 90 187
[10] Mitra C, Raychaudhuri P, Köbernik G, Dörr K, Müller K H, Schultz L and Pinto R 2001 Appl. Phys. Lett. 79 2408
[11] Ohtomo A and Hwang H H 2004 Nature 427 423
[12] Cen C, Thiel S, Hammerl G, Schneider C W, Andersen K E, Hellberg C S, Mannhart J and Levy J 2008 Nat. Mater. 7 298
[13] Park J W, Bogorin D F, Cen C, Felker D A, Zhang Y, Nelson C T, Bark C W, Folkman C M, Pan X Q, Rzchowski M S, Levy J and Eom C B 2010 Nat. Commun. 1 94
[14] Schlom D G and Mannhart J 2011 Nat. Mater. 10 168
[15] Ahn C H, Triscone J M and Mannhart J 2003 Nature 424 1015
[16] Evgeny Y T and Hermann K 2006 Science 313 181
[17] Levine U N 1963 Principle of Solid-State Microelectronics (Holt, Rinehart and Wiinston, Inc.)
[18] Tokura Y, Takagi H and Uchida S 1989 Nature 337 345
[19] Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583
[20] Hwang C S, Park S O, Cho H J, Kang C S, K H K, Lee S I and Lee M Y 1995 Appl. Phys. Lett. 67 2819
[21] Grundmann M 2006 The Physics of Semiconductors (Berlin: Springer-Verlag) P191
[22] Hwang C S 2002 J. Appl. Phys. 92 432
[23] Junquera J and Ghosez P 2003 Nature 422 506
[24] Sze S M 1998 Physics of Semiconductor Devices 2nd edn (New York: Wiley) p 28
[25] Mott N F 1938 Proc. Combridge Philos. Soc. 34 568
[26] Schottky W 1940 Phys. Z. 41 570
[27] Norde H A 1979 J. Appl. Phys. 50 5052
[28] Yuan J, Wu H, Cao L X, Zhao L, Jin K, Zhu B Y, Zhu S J, Zhong J P, Miao J, Xu B, Qi X Y, Qiu X G, Duan X F and Zhao B R 2007 Appl. Phys. Lett. 90 102113

Related articles from Frontiers Journals
[1] Xin Yu, Wu Lu, Shuai Yao, Qi Guo, Jing Sun, Xin Wang, Mo-Han Liu, Xiao-Long Li. Simulation of Synergism Effect Using Temperature Switching Irradiation on Bipolar Comparator[J]. Chin. Phys. Lett., 2018, 35(8): 107402
[2] Pei Li, Chao-Hui He, Gang Guo, Hong-Xia Guo, Feng-Qi Zhang, Jin-Xin Zhang, Shu-Ting Shi. Heavy Ion and Laser Microbeam Induced Current Transients in SiGe Heterojunction Bipolar Transistor[J]. Chin. Phys. Lett., 2017, 34(10): 107402
[3] LI Pei, GUO Hong-Xia, GUO Qi, ZHANG Jin-Xin, WEI Ying,. Laser-Induced Single Event Transients in Local Oxidation of Silicon and Deep Trench Isolation Silicon-Germanium Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2015, 32(08): 107402
[4] LIU Hong-Tao, YANG Bao-He, LV Hang-Bing, XU Xiao-Xin, LUO Qing, WANG Guo-Ming, ZHANG Mei-Yun, LONG Shi-Bing, LIU Qi, LIU Ming. Effect of Pulse and dc Formation on the Performance of One-Transistor and One-Resistor Resistance Random Access Memory Devices[J]. Chin. Phys. Lett., 2015, 32(02): 107402
[5] TAN Yu, WANG Yan-Guo. Enhanced Current Carrying Capability of Au-ZnSe Nanowire-Au Nanostructure via High Energy Electron Irradiation[J]. Chin. Phys. Lett., 2014, 31(10): 107402
[6] XU Xiao-Bo, ZHANG Bin, YANG Yin-Tang, LI Yue-Jin. An Analytical Model of SiGe Heterojunction Bipolar Transistors on SOI Substrate for Large Current Situations[J]. Chin. Phys. Lett., 2013, 30(2): 107402
[7] XU Xiao-Bo**, ZHANG He-Ming . An Analytical Avalanche Multiplication Model for Partially Depleted Silicon-on-Insulator SiGe Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 107402
[8] LIU Hong-Gang, JIN Zhi, SU Yong-Bo, WANG Xian-Tai, CHANG Hu-Dong, ZHOU Lei, LIU Xin-Yu, WU De-Xin. Extrinsic Base Surface Passivation in High Speed “Type-II'” GaAsSb/InP DHBTs Using an InGaAsP Ledge Structure[J]. Chin. Phys. Lett., 2010, 27(5): 107402
[9] JIN Zhi, CHENG Wei, SU Yong-Bo, LIU Xin-Yu, XU An-Huai, QI Ming. High-Current Multi-Finger Mesa InGaAs/InP DHBTs[J]. Chin. Phys. Lett., 2009, 26(12): 107402
[10] CHENG Wei, JIN Zhi, SU Yong-Bo, LIU Xin-Yu, XU An-Huai, QI Ming. Composite-Collector InGaAs/InP Double Heterostructure Bipolar Transistors with Current-Gain Cutoff Frequency of 242 GHz[J]. Chin. Phys. Lett., 2009, 26(3): 107402
[11] JIN Zhi, SU Yong-Bo, CHENG Wei, LIU Xin-Yu, XU An-Huai, QI Ming. High Current Multi-finger InGaAs/InP Double Heterojunction Bipolar Transistor with the Maximum Oscillation Frequency 253GHz[J]. Chin. Phys. Lett., 2008, 25(8): 107402
[12] JIN Zhi, SU Yong-Bo, CHENG Wei, LIU Xin-Yu, XU An-Huai, QI Ming. High-Speed InGaAs/InP Double Heterostructure Bipolar Transistor with High Breakdown Voltage[J]. Chin. Phys. Lett., 2008, 25(7): 107402
[13] JIN Zhi, SU Yong-Bo, CHENG Wei, LIU Xin-Yu, XU An-Hai, QI Ming. High-Breakdown-Voltage Submicron InGaAs/InP Double Heterojunction Bipolar Transistor with ft=170GHz and fmax=253GHz[J]. Chin. Phys. Lett., 2008, 25(7): 107402
[14] XUE Chun-Lai, YAO Fei, SHI Wen-Hua, CHENG Bu-Wen, WANG Hong-Jie, YU Jin-Zhong, WANG Qi-Ming. A Base-Emitter Self-Aligned Multi-Finger Si1-xGex/Si Power Heterojunction Bipolar Transistor[J]. Chin. Phys. Lett., 2007, 24(7): 107402
[15] LI Xian-Jie, CAI Dao-Min, ZENG Qing-Ming, LIU Shi-Yong, LIANG Chun-Guang. Self-Aligned InP/InGaAs Single Heterojunction Bipolar Transistor with Novel Micro-airbridge Structure and Quasi-coplanar Contacts[J]. Chin. Phys. Lett., 2003, 20(2): 107402
Viewed
Full text


Abstract