Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 104209    DOI: 10.1088/0256-307X/29/10/104209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Thin-Core Fiber Modal Interferometer for Liquid-Level Sensing
XU Ben1, LI Jian-Qing1*, LI Yi2, DONG Xin-Yong2
1Faculty of Information Technology, Macau University of Science and Technology, Macao SAR 999078
2College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018
Cite this article:   
XU Ben, LI Jian-Qing, LI Yi et al  2012 Chin. Phys. Lett. 29 104209
Download: PDF(809KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A fiber-optic liquid-level sensor is proposed and experimentally demonstrated. It is a Mach–Zehnder interferometer (MZI) composed of a thin-core single-mode fiber (TCSMF) without coating sandwiched between two single-mode fibers (SMFs). The transmission spectrum properties of the MZI modified by liquid around the TCSMF are used for detecting the liquid level. It is found that the sensor exhibits an excellent linear relationship between the level and the shift of interference dip wavelength and its achieved sensitivities are 0.160 nm/mm and 0.288 nm/mm for liquid with an RI of 1.3330 and 1.3696, respectively. Employing the spectrum differential integration (SDI) method to analyze transmission spectra can increase the detecting resolution of the liquid level. Due to its advantages of an extremely easy fabrication process, high sensitivity and a large sensing range, the sensor is an ideal candidate for continuous liquid level sensing.
Received: 05 March 2012      Published: 01 October 2012
PACS:  42.81.Pa (Sensors, gyros)  
  07.60.Ly (Interferometers)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/104209       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/104209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Ben
LI Jian-Qing
LI Yi
DONG Xin-Yong
[1] Zhang M J and Li S W 2010 Int. Conf. Comput. Application Syst. Modeling (Taiyuan, China 22–24 October 2010) pV7-144
[2] Donlagic D 2002 Rev. Sci. Instrum. 73 464
[3] Reverter F, Li X J and Meijer G C M 2007 Sens. Actuators A 138 1
[4] Singh H K, Chakroborty S K, Talukdar H, Singh N M and Bezboruah T 2011 IEEE Sens. J. 11 391
[5] Lu T, Li Z J, Xia D Q, He K H and Zhang G Y 2009 Rev. Sci. Instrum. 80 033104
[6] Guo T, Zhao Q D, Dou Q Y, Zhang H, Xue L F, Huang G L and Dong X L 2005 IEEE Photon. Technol. Lett. 17 2400
[7] Sohn K R and Shim J H 2009 Sens. Actuators A 152 248
[8] Lai C W, Lo Y L, Yur J P and Chuang C H 2012 IEEE Sens. J. 12 827
[9] Lu T and Yang S P 2007 Appl. Opt. 46 3682
[10] Khaliq S, James S W and Tatam R P 2001 Opt. Lett. 26 1224
[11] Yun B Y, Chen N and Cui Y P 2007 IEEE Photon. Technol. Lett. 19 1747
[12] Dong X W and Zhao R F 2010 Opt. Laser Technol. 42 214
[13] Jiang Q, Hu D B and Yang M 2011 Sens. Actuators A 170 62
[14] Chandani S M and Jaeger N A F 2007 Opt. Eng. 46 114401
[15] Lomer M, Quintela A, López-Amo M, Zubia J and López-Higuera J M 2007 Meas. Sci. Technol. 18 2261
[16] Li B, Jiang L, Wang S, Zhou L, Xiao H and Tsai H L 2011 Sensors 11 5729
[17] Xia T H, Zhang A P, Gu B B and Zhu J J 2010 Opt. Commun. 283 2136
[18] Xu B, Li Y, Dong X Y, Jin S Z and Zhang Z X 2012 Chin. Phys. Lett. 29 094203
[19] Wu Q, Semenova Y L Y, Wang P F and Farrell G 2011 Opt. Express 19 7937
[20] Fu H Y, Shu X W, Zhang A P, Liu W S, Zhang L, He S L and Bennion I 2011 IEEE Sens. J. 11 2878
[21] Chen T, Chen R, Lu P, Q Chen and Chen K P 2011 Electron. Lett. 47 1093
[22] Zhao Y, Jin Y X and Wang J F 2011 Int. Conf. Electron. Optoelectron. (Hangzhou, China 29–31 July 2011) pV3-214
[23] Antonio-Lopez J E, Sanchez-Mondragon J J, LiKamWa P and May-Arrioja D A 2011 Opt. Lett. 36 3425
[24] Li Y, Harris E, Chen L and Bao X 2010 Opt. Express 18 8135
Related articles from Frontiers Journals
[1] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 104209
[2] Xian-Ping Luo, Fei-Ru Wang, Chun-Lei Chen, Ling-Li Zhang, Lei Wang, Wei-Min Sun, Yong-Jun Liu. A Novel Mach–Zehnder Interferometer Based on Hybrid Liquid Crystal–Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2017, 34(12): 104209
[3] ZHANG Yun-Shan, QIAO Xue-Guang, SHAO Min, LIU Qin-Peng. In-Fiber Mach–Zehnder Interferometer Based on Waist-Enlarged Taper and Core-Mismatching for Strain Sensing[J]. Chin. Phys. Lett., 2015, 32(06): 104209
[4] LIU Ning-Liang, LIU Shu-Hui, LU Pei-Xiang. A Femtosecond-Laser-Induced Fiber Bragg Grating with Supermode Resonances for Sensing Applications[J]. Chin. Phys. Lett., 2014, 31(09): 104209
[5] WEN Xiao-Dong, NING Ti-Gang, YOU Hai-Dong, KANG Ze-Xin, LI Jing, LI Chao, FENG Ting, YU Shao-Wei, JIAN Wei. Analysis and Measurement of the Displacement Sensor Based on an Up-tapered Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2014, 31(03): 104209
[6] XU Bin-Zong, LIU Jie-Tao, HU Hai-Feng, WANG Li-Na, WEI Xin, SONG Guo-Feng. A High Sensitivity Index Sensor Based on Magnetic Plasmon Resonance in Metallic Grating with Very Narrow Slits[J]. Chin. Phys. Lett., 2013, 30(4): 104209
[7] XU Ben, LI Yi, DONG Xin-Yong, JIN Shang-Zhong, ZHANG Zai-Xuan. Highly Sensitive Refractive Index Sensor Based on a Cladding-Etched Thin-Core Fiber Sandwiched between Two Single-Mode Fibers[J]. Chin. Phys. Lett., 2012, 29(9): 104209
[8] SHI Sheng-Hui, ZHOU Xiao-Jun, ZHANG Zhi-Yao, LAN Lan, YIN Cong, LIU Yong. Fiber-Optic Solution Concentration Sensor Based on a Pressure-Induced Long-Period Grating in a Composite Waveguide[J]. Chin. Phys. Lett., 2012, 29(9): 104209
[9] ZHANG Ji-Huang, LIU Ning-Liang, WANG Ying, JI Ling-Ling, LU Pei-Xiang. Dual-Peak Bragg Gratings Inscribed in an All-Solid Photonic Bandgap Fiber for Sensing Applications[J]. Chin. Phys. Lett., 2012, 29(7): 104209
[10] LIU Cheng-Xiang, ZHANG Li, WU Xu, RUAN Shuang-Chen. High-Stability Superfluorescent Fiber Source Based on an Er3+-Doped Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2012, 29(6): 104209
[11] HONG Ling-Fei**, ZHANG Chun-Xi, FENG Li-Shuang, YU Huai-Yong, LEI Ming. Frequency Modulation Induced by using the Linear Phase Modulation Method used in a Resonator Micro-optic Gyro[J]. Chin. Phys. Lett., 2012, 29(1): 104209
[12] LUO Tao, GU Zheng-Tian** . A New Type of Absorbance Sensors Based on Long-Period Fiber Gratings[J]. Chin. Phys. Lett., 2011, 28(5): 104209
[13] LI Zheng-Yong, WU Chong-Qing, SHANG Chao, YU Xiang-Zhi . Mueller-Matrix-Based Differential Rotation Method for Precise Measurement of Fiber Birefringence Vector[J]. Chin. Phys. Lett., 2010, 27(10): 104209
[14] LI Ming-Shan, YANG Chang-Xi. Laser-Induced Silver Nanoparticles Deposited on Optical Fiber Core for Surface-Enhanced Raman Scattering[J]. Chin. Phys. Lett., 2010, 27(4): 104209
[15] RAO Yun-Jiang, XU Bing, RAN Zeng-Ling, GONG Yuan. Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers[J]. Chin. Phys. Lett., 2010, 27(2): 104209
Viewed
Full text


Abstract