Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 104203    DOI: 10.1088/0256-307X/29/10/104203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
The Resonant Fluorescence of a Single InAs Quantum Dot in a Cavity
DOU Xiu-Ming, YU Ying, SUN Bao-Quan**, JIANG De-Sheng, NI Hai-Qiao, NIU Zhi-Chuan
SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083
Cite this article:   
DOU Xiu-Ming, YU Ying, SUN Bao-Quan et al  2012 Chin. Phys. Lett. 29 104203
Download: PDF(556KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the coherent resonant emission of the exciton state in a single InAs quantum dot, embedded in a planar optical microcavity. The quantum dot is excited by a laser beam from the cleaved sample edge, and the resonant fluorescence is collected in the direction perpendicular to the excitation laser beam, so the residual laser scattering can be deeply suppressed. This experimental setup enables us to observe Rabi oscillation and a Mollow triplet with Rabi energy up to about 27 μeV.
Received: 27 June 2012      Published: 01 October 2012
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  78.67.Hc (Quantum dots)  
  78.55.-m (Photoluminescence, properties and materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/104203       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/104203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DOU Xiu-Ming
YU Ying
SUN Bao-Quan
JIANG De-Sheng
NI Hai-Qiao
NIU Zhi-Chuan
[1] Htoon H et al 2002 Phys. Rev. Lett. 88 087401
[2] Patton B, Woggon U and Langbein W 2005 Phys. Rev. Lett. 95 266401
[3] Stievater T H et al 2001 Phys. Rev. Lett. 87 133603
[4] Zrenner A et al 2002 Nature 418 612
[5] Michler P et al 2000 Science 290 2282
[6] Dou X M et al 1998 Chin. Phys. Lett. 15 501
[7] Wang Q Q et al 2005 Phys. Rev. B 72 035306
[8] Liu R B, Yao W and Sham L J 2010 Adv. Phys. 59 703
[9] Muller A et al 2007 Phys. Rev. Lett. 99 187402
[10] Flagg E B et al 2009 Nat. Phys. 5 203
[11] Ates S et al 2009 Phys. Rev. Lett. 103 167402
[12] Ulrich S M et al 2011 Phys. Rev. Lett. 106 247402
[13] Melet R et al 2008 Phys. Rev. B 78 073301
[14] Vamivakas A N et al 2009 Nat. Phys. 5 198
[15] Dou X M et al 2008 Appl. Phys. Lett. 93 101107
[16] Villas-B?as J M, Ulloa S E and Govorov A O 2005 Phys. Rev. Lett. 94 057404
[17] Mollow B R 1969 Phys. Rev. 188 1969
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 104203
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 104203
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 104203
[4] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 104203
[5] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 104203
[6] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 104203
[7] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 104203
[8] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 104203
[9] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 104203
[10] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 104203
[11] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 104203
[12] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 104203
[13] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 104203
[14] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 104203
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 104203
Viewed
Full text


Abstract