Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 019601    DOI: 10.1088/0256-307X/29/1/019601
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
An Internal Heating Model to Elucidate the Shape of a Small Planetary Body
LI Gen, CHEN Chu-Xin**
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026
Cite this article:   
LI Gen, CHEN Chu-Xin 2012 Chin. Phys. Lett. 29 019601
Download: PDF(524KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Small planetary bodies usually have irregular shapes. If they are large enough to be heated to a partial melting status, the deforming force of gravity could overcome the internal forces and make the shape transfigure from potato-like to spherical. We have developed a model to calculate the thermal history of a planetoid and apply the model to asteroids, since ample evidence has shown that many asteroids could have undergone differentiation. After revealing the relation between the shape and the ratio of the melt part, we also examine the surface roughness of these asteroids and suggest that 280 km would be a critical radius for an asteroid to develop a virtually globular contour.
Keywords: 96.25.Bd      96.30.Ys      91.60.Ki     
Received: 18 April 2011      Published: 07 February 2012
PACS:  96.25.Bd (Origin and evolution)  
  96.30.Ys (Asteroids, meteoroids)  
  91.60.Ki (Thermal properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/019601       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/019601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Gen
CHEN Chu-Xin
[1] Herndon J M et al 1973 Nature Phys. Sci. 244 40
[2] Urey H 1955 Proc. Natl. Acad. Sci. U. S.A. 41 127
[3] Lee T et al 1976 Geophys. Res. Lett. 3 41
[4] Russell S S et al 1996 Science 273 757
[5] Kita N T et al 2000 Geochim. Cosmochim. Acta 64 3913
[6] Thomas C Hanks et al 1968 Phys. Earth Planet. Interiors 2 19
[7] Herndon J M 1977 Meteoritic 12 459
[8] Carslaw H S and Jaeger J C 1959 Conduction of Heat in Solids (Oxford: Oxford University)
[9] Opeil C P et al 2010 Icarus 208 449
[10] Kleine T et al 2005 Geochimica et Cosmochimica Acta 69 5805
[11] López Gonzáles M J 2005 Planet. Space Sci. 53 1147
[12] Baer J 2010 Recent Asteroid Mass Determinations http://home.earthlink.net/ jimbaer1/astmass.txt
[13] JPL Small Body Database Browser http://ssd.jpl.nasa.gov/sbdb.cgi
[14] Michałowski T et al 2004 Astron. Astrophys. 416 353
[15] Nugent R 2003 http://www.weblore.com/richard/Asteroid_Profiles.htm#704 Interamnia
[16] Schmidt B E et al 2008 39th Lunar and Planetary Science Conference (League City, Texas 10–14 March) 1391 2502
[17] Thomas P C et al 1997 Science 277 1492
[18] Ghosh A et al 2000 Meteoritics Planet. Sci. 35 A59
[19] Merk R 2002 Icarus 159 183
Related articles from Frontiers Journals
[1] ZENG Qing-Guang, DING Ze-Jun, JU Xin, WANG Yi, SHENG Ye-Qing. Temperature Dependence of the Fluorescence Emission Intensity of Eu/TiO2 Nanocrystals[J]. Chin. Phys. Lett., 2007, 24(5): 019601
[2] ZHOU Li-Yong, SUN Yi-Sui, ZHOU Ji-Lin. Diffusion in a Symplectic Map with Application to Asteroid Motion[J]. Chin. Phys. Lett., 2000, 17(10): 019601
Viewed
Full text


Abstract