Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 018103    DOI: 10.1088/0256-307X/29/1/018103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
The Field Emission Characteristics of Titanium-Doped Nano-Diamonds
YANG Yan-Ning1, ZHANG Zhi-Yong2**, ZHANG Fu-Chun1, DONG Jun-Tang1, ZHAO Wu2, ZHAI Chun-Xue2, ZHANG Wei-Hu1
1College of Physics and Electronic Information, Yan'an University, Yan'an 716000
2School of Information Science and Technology, Northwest University, Xi'an 710127
Cite this article:   
YANG Yan-Ning, ZHANG Zhi-Yong, ZHANG Fu-Chun et al  2012 Chin. Phys. Lett. 29 018103
Download: PDF(1210KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An electrophoresis solution, prepared in a specific ratio of titanium (Ti)-doped nano-diamond, is dispersed by ultrasound and the nano-diamond coating is then deposited on a polished Ti substrate by electrophoresis. After high-temperature vacuum annealing, the appearance of the surface and the microstructures of the coating are observed by a metallomicroscope, scanning electron microscopy and Raman spectroscopy. The field emission characteristics and luminescence features are also tested, and the mechanism of the field emission characteristics of the Ti-doped nano-diamond is analyzed. The experimental results show that under the same conditions, the diamond-coated surface (by deposition) is more uniform after doping with 5 mg of Ti powder. Compared with the undoped nano-diamond cathode, the turn-on fields decline from 6.95 to 5.95 V/µm. When the electric field strength is 13.80 V/µm, the field emission current density increases to 130.00 µA/cm2. Under the applied fields, the emission current is stable and the luminescence is at its best, while the field emission characteristics of the 10 mg Ti-doped coating become worse, as does the luminescence. The reason for this could be that an excessive amount of TiC is generated on the surface of the coating.
Keywords: 81.07.Bc      81.05.Ug      79.70.+q     
Received: 25 August 2011      Published: 07 February 2012
PACS:  81.07.Bc (Nanocrystalline materials)  
  81.05.ug (Diamond)  
  79.70.+q (Field emission, ionization, evaporation, and desorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/018103       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/018103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Yan-Ning
ZHANG Zhi-Yong
ZHANG Fu-Chun
DONG Jun-Tang
ZHAO Wu
ZHAI Chun-Xue
ZHANG Wei-Hu
[1] Zhu W et al 1998 Science 282 1471
[2] Gu G Y and Toshimichi Ito 2011 Appl. Surf. Sci. 257 2455
[3] Roos M et al 2007 Appl. Surf. Sci. 253 7381
[4] Li Z L et al 2010 Chin. Phys. Lett. 27 0685047
[5] Kumar A et al 1997 Thin Solid Films 308 209
[6] Wang T et al 2009 Chin. Phys. Lett. 26 066801
[7] Pryor R W 1996 Appl. Phys. Lett. 68 1802
[8] Zang Y and Diao D S 2009 Chin. Phys. Lett. 26 038101
[9] Li J et al 2008 Chin. Phys. Lett. 25 2657
[10] Robertson 1996 Phys. Rev. B 53 16302
[11] Liao M Y et al 2002 J. Cryst. Growth 236 85
[12] Xue X Y et al 2007 Chin. Phys. Lett. 24 3492
[13] Lee Y C et al 2005 Diamond Relat. Mater. 14 2055
[14] Franz A M and Robert J 2006 Diamond Relat. Mater. 15 217
[15] Contreras O et al 2000 Appl. Surf. Sci. 58 236
[16] Baral B et al 1997 Diamond Relat. Mater. 6 867
[17] Li J J et al 2005 Appl. Phys. A 81 357
[18] Wang S G et al 2003 Surface and Coating Technology 167 143
[19] Shao L X et al 1999 J. Lanzhou University (Natural Sciences) 35 160
[20] GU C Z 2005 Appl. Surf. Sci. 251 225
[21] Palosz B et al 2006 Diam. Relat. Mater. 15 1813
[22] Kulisch W et al 2006 Thin Solid Films 515 1005
[23] Chen W C et al 2009 Diamond Relat. Mater. 8 124
[24] Chalker P R et al 1994 Diamond Relat. Mater. 3 393
[25] Yan J K and Chang L 2006 Thin Solid Films 498 230
[26] Pfeiffer R, Kuzmany H, Knoll P, Bokova S, Salk N and Gunther B 2003 Diamond Relat. Mater. 12 268
[27] Chen Q J, Wang L X, Zhang Z, Yang J and Lin Z D 1996 Appl. Phys. Lett. 68 176
[28] Prawer S et al 2000 Chem. Phys. Lett. 332 93
[29] Ferrari A C and Robertson J 2001 Phys. Rev. B 63 121405
[30] Filik J et al 2006 Phys. Rev. B 74 035423
[31] Xu N S et al 2001 J. Vac. Sci. Technol. B 19 105
[32] Qiao L et al 2009 Diamond Relat. Mater. 18 657
Related articles from Frontiers Journals
[1] FAN Xiao-Hong,XU Bin**,NIU Zhen,ZHAI Tong-Guang,TIAN Bin. Fine Structural and Carbon Source Analysis for Diamond Crystal Growth using an Fe-Ni-C System at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(4): 018103
[2] LI Ping-Yun, ZHANG Xi-Yan, NI Hai-Tao, CAO Zhen-Hua, MENG Xiang-Kang. Deformation Induced Internal Friction Peaks in Nanocrystalline Nickel[J]. Chin. Phys. Lett., 2012, 29(2): 018103
[3] LI Ping-Yun, CAO Zhen-Hua, JIANG Zhong-Hao, MENG Xiang-Kang** . FMAA-MS Investigation into Ni68Fe32 Nanoalloy with Sample Length Less than 30mm[J]. Chin. Phys. Lett., 2011, 28(8): 018103
[4] GUO Xiao-Song, BAO Zhong, ZHANG Shan-Shan, XIE Er-Qing** . A Novel Model of the H Radical in Hot-Filament Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(2): 018103
[5] GUO Xiao-Song, ZHANG Shan-Shan, BAO Zhong, ZHANG Hong-Liang, CHEN Chang-Cheng, LIU Li-Xin, LIU Yan-Xia, XIE Er-Qing** . Effect of Substrate Temperature on the Structural, Electrical and Optical Properties of Nanocrystalline Silicon Films in Hot-Filament Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(2): 018103
[6] WANG Li-Jun, ZHU Yu-Zhuan, WANG Xiao-Ping, ZHANG Shi, LIU Xin-Xin, LI Huai-Hui, MEI Cui-Yu, LIU Xiao-Fei. Field Electron Emission from Caterpillar-Like Clavae Nano-Structure Carbon Thin Films[J]. Chin. Phys. Lett., 2010, 27(8): 018103
[7] ZHANG Chun-Mei, ZHENG Yan-Bin, JIANG Zhi-Gang, LV Xian-Yi, HOU Xue, HU Shuang, LIU Jun-Wei. Effect of CO2 Addition on Preparation of Diamond Films by Direct-Current Hot-Cathode Plasma Chemical Vapor Deposition Method[J]. Chin. Phys. Lett., 2010, 27(8): 018103
[8] LV Shi-Cheng, GE Zhong-Yang, ZHOU Yue, XU Bo, GAO Li-Gang, YIN Jiang, XIA Yi-Dong, LIU Zhi-Guo . A Charge-Trap Memory Device with a Composition-Modulated Zr-Silicate High-k Dielectric Multilayer Structure[J]. Chin. Phys. Lett., 2010, 27(6): 018103
[9] CHENG Jin, , ZOU Xiao-Ping, SONG Wei-Li, CAO Mao-Sheng, SU Yi, YANG Gang-Qiang, , Lü Xue-Ming, ZHANG Fu-Xue,. Shape-Controlled Synthesis and Related Growth Mechanism of Pb(OH)2 Nanorods by Solution-Phase Reaction[J]. Chin. Phys. Lett., 2010, 27(5): 018103
[10] JI Zhong-Hua, WU Ji-Zhou, MA Jie, FENG Zhi-Gang, ZHANG Lin-Jie, ZHAO Yan-Ting, WANG Li-Rong, XIAO Lian-Tuan, JIA Suo-Tang. Ionization Detection of Ultracold Ground State Cesium Molecules[J]. Chin. Phys. Lett., 2010, 27(5): 018103
[11] WANG Qi-Liang, LÜ, Xian-Yi, LI Liu-An, CHENG Shao-Heng, LI Hong-Dong. Growth and Characteristics of Freestanding Hemispherical Diamond Films by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2010, 27(4): 018103
[12] MENG Ling-Rong, CHEN Wei-Meng, CHEN Chin-Ping, ZHOU He-Ping, PENG Qing**. Preparation, Morphology Transformation and Magnetic Behavior of Co3O4 Nano-Leaves[J]. Chin. Phys. Lett., 2010, 27(12): 018103
[13] WANG Tao, LI Rui-Shan, PAN Xiao-Jun, ZHANG Pei-Zeng, ZHOU Ming, SONGXi, XIE Er-Qing. Improvement of Field Emission Characteristics of Copper Nitride Films with Increasing Copper Content[J]. Chin. Phys. Lett., 2009, 26(6): 018103
[14] MAO Ping, ZHANG Zhi-Gang, PAN Li-Yang, XU Jun, CHEN Pei-Yi. Nonvolatile Memory Characteristics with Embedded High Density Ruthenium Nanocrystals[J]. Chin. Phys. Lett., 2009, 26(5): 018103
[15] MAO Ping, ZHANG Zhi-Gang, PAN Li-Yang, XU Jun, CHEN Pei-Yi. High-Density Stacked Ru Nanocrystals for Nonvolatile Memory Application[J]. Chin. Phys. Lett., 2009, 26(4): 018103
Viewed
Full text


Abstract