Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 096103    DOI: 10.1088/0256-307X/28/9/096103
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles
SONG Hua-Jie, HUANG Feng-Lei**
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081
Cite this article:   
SONG Hua-Jie, HUANG Feng-Lei 2011 Chin. Phys. Lett. 28 096103
Download: PDF(532KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We predict the densities of crystalline hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by introducing a factor of (1+1.5 × 10−4 T) into the wavefunction-based potential of RDX constructed from first principles using the symmetry-adapted perturbation theory and the Williams–Stone–Misquitta method. The predicted values are within an accuracy of 1% of the density from 0 to 430 K and closely reproduced the RDX densities under hydrostatic compression. This work heralds a promising approach to predicting accurately the densities of high explosives at temperatures and pressures to which they are often subjected, which is a long-standing issue in the field of energetic materials.
Keywords: 61.50.Ah      34.20.Gj      65.40.De     
Received: 04 May 2011      Published: 30 August 2011
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  34.20.Gj (Intermolecular and atom-molecule potentials and forces)  
  65.40.De (Thermal expansion; thermomechanical effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/096103       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/096103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Hua-Jie
HUANG Feng-Lei
[1] Mader C L 1996 Organic Energetic Compounds (New York: Nova Science Publishers) p 193
[2] Sorescu D C, Rice B M and Thompson D L 1997 J. Phys. Chem. B 101 798
[3] Agrawal P M, Rice B M, Zheng L and Thompson D L 2006 J. Phys. Chem. B 110 26185
[4] Boyd S, Gravelle M and Politzer P J 2006 J. Chem. Phys. 124 104508
[5] Smith G D and Bharadwaj R K 1999 J. Phys. Chem. B 103 3570
[6] Zheng L and Thompson D L 2006 J. Chem. Phys. 125 084505
[7] Podeszwa R, Bukowski R, Rice B M and Szalewicz K 2007 Phys. Chem. Chem. Phys. 9 5561
[8] Podeszwa R, Rice B M and Szalewicz K 2008 Phys. Rev. Lett. 101 115503
[9] Podeszwa R, Rice B M and Szalewicz K 2009 Phys. Chem. Chem. Phys. 11 5512
[10] Misquitta A J and Szalewicz K 2002 Chem. Phys. Lett. 357 301
[11] Hesselmann A and Jansen G 2002 Chem. Phys. Lett. 357 464
[12] Hesselmann A and Jansen G 2003 Chem. Phys. Lett. 367 778
[13] Misquitta A J, Jeziorski B and Szalewicz K 2003 Phys. Rev. Lett. 91 33201
[14] Misquitta A J and Szalewicz K 2005 J. Chem. Phys. 122 214109
[15] Misquitta A J, Podeszwa R, Jeziorski B and Szalewicz K 2005 J. Chem. Phys. 123 214103
[16] DALTON a molecular electronic structure program, Release 2. 0 http://www.kjemi.uio.no/software/dalton/dalton.html
[17] Cady H J 1972 J. Chem. Eng. Data 17 369
[18] The Sadlej pVTZ basis set was augmented (aug-Sadlej) by adding the 1f diffuse basis functions on C (0.0944), N (0.1210), and O (0.1750), as well as the 1d function on H (0.0577). The original Sadlej basis set was found to be rather poor for dispersion energy, hence unsuitable for density and lattice energy.
[19] Misquitta A J and Stone A J 2009 CAMCASP: a program for studying intermolecular interactions and for the calculation of molecular properties in distributed form (Cambridge: University of Cambridge)
[20] Misquitta A J and Stone A J 2008 J. Chem. Theor. Comput. 4 7
[21] Misquitta A J and Stone A J, Price S L 2008 J. Chem. Theor. Comput. 4 19
[22] Misquitta A J and Stone A J 2008 Mol. Phys. 106 1631
[23] Misquitta A J, Welch G W A, Stone A J and Price S L 2008 Chem. Phys. Lett. 456 105
[24] Stone A J, 2005 J. Chem. Theor. Comput. 1 1128
[25] Tang K T and Toennies J P 1984 J. Chem. Phys. 80 3726
[26] Bondi A 1964 J. Phys. Chem. 68 441
[27] Choi C S and Prince E 1972 Acta Crysallogr. B 28 2857
[28] Hakey P, Ouellette W, Zubieta J and Korter T 2008 Acta Cryst. E 64 o1428
[29] Grimme S 2006 J. Comput. Chem. 27 1787
[30] Sun J, Shu X, Liu Y, Zhang H, Liu X, Jiang Y, Kang B, Xue C and Song G 2010 Prop. Explos. Pyrotech. 35 1
[31] Olinger B, Roof B and Cady H 1978 Proc. Symposium (Intern.) on High Dynamic Pressures (Paris: C.E.A.) p 3
Related articles from Frontiers Journals
[1] LIU Yang**,PENG Xing-Ping. Validity of Nonlinear Thermodynamic Models in Ferroelectric-Paraelectric Bilayers and Superlattices[J]. Chin. Phys. Lett., 2012, 29(5): 096103
[2] LUO Xiao-Guang, HE Ju-Long. B–C–N Compounds with Mixed Hybridization of sp2-Like and sp3-Like Bonds[J]. Chin. Phys. Lett., 2012, 29(3): 096103
[3] ZHANG Jing, CHEN Zheng, ZHUANG Hou-Chuan, LU Yan-Li. Microscopic Phase-Field Study of the Occupancy Probability of α Sublattices Involving Coordination Environmental Difference for D022−Ni3V[J]. Chin. Phys. Lett., 2012, 29(2): 096103
[4] LIU Yang**, PENG Xing-Ping . Strain Effects of the Structural Characteristics of Ferroelectric Transition in Single-Domain Epitaxial BiFeO3 Films[J]. Chin. Phys. Lett., 2011, 28(6): 096103
[5] DENG Hong-Yan, HAO Wei-Chang, XU Huai-Zhe** . A Transition Phase in the Transformation from α-;, β- and ϵ- to δ-Bismuth Oxide[J]. Chin. Phys. Lett., 2011, 28(5): 096103
[6] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 096103
[7] LIU Xi**, LIU Wei, HE Qiang, DENG Li-Wei, WANG He-Jin, HE Duan-Wei, LI Bao-Sheng . Isotropic Thermal Expansivity and Anisotropic Compressibility of ReB2[J]. Chin. Phys. Lett., 2011, 28(3): 096103
[8] FENG Yu-Liang, ZHANG Yuan, JI Bing-Yu, MU Wen-Zhi . Micro-acting Force in Boundary Layer in Low-Permeability Porous Media[J]. Chin. Phys. Lett., 2011, 28(2): 096103
[9] HU Qian-Ku, **, WANG Hai-Yan, WU Qing-Hua, HE Ju-Long, ZHANG Guang-Lei . Structural and Electronic Properties, and Pressure-Induced Phase Transition of Layered C5N: a First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(12): 096103
[10] ZHANG Lei, YANG Jun-He**, WANG Xian-Ying**, HE Xing, ZHAO Bin, TANG Zhi-Hong, YANG Guang-Zhi, QIU Han-Xun . Thermal Properties of Poly(vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) (PVVH) Polymer and Its Application in ZnO Based Nanogenerators[J]. Chin. Phys. Lett., 2011, 28(1): 096103
[11] LI Li-Juan, ZHAO Ming-Wen, JI Yan-Ju, LI Feng, LIU Xiang-Dong. Energetic Evolution of Single-Crystalline ZnO Nanowires and Nanotubes[J]. Chin. Phys. Lett., 2010, 27(8): 096103
[12] JIN Yun-Fei, YE Xiang-Xi, LI Jing-Tian, ZHANG Wen-Xian, ZHUANG Jun, NING Xi-Jing,. A Simple Theoretical Method to Predict the Hardness of Pure Metal Crystals[J]. Chin. Phys. Lett., 2010, 27(7): 096103
[13] YU Yan-Long, ZHENG Li-Hui, XU Xin, SUN Hong-Yu** . Thermal Expansion Behavior of Hexagonal ZnS Single-Crystal Nanowires Embedded in Anodized Aluminum Oxide Template[J]. Chin. Phys. Lett., 2010, 27(10): 096103
[14] SHAO Xi. Indication of Low-Energy BC5 Structures[J]. Chin. Phys. Lett., 2010, 27(1): 096103
[15] LIAO Shu-Zhi, WANG Xiao-Li, ZHU Xiang-Ping, ZHANG Chun, OUYANG Yi-Fang, ZHANG Bang-Wei,. The MAEAM Model and Anharmonic Theory for the Bulk Modulus of Al Metal[J]. Chin. Phys. Lett., 2009, 26(8): 096103
Viewed
Full text


Abstract