Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 096101    DOI: 10.1088/0256-307X/28/9/096101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer
GUO Yu-Bing1, CHEN Yong-Hai1**, XIANG Ying2, QU Sheng-Chun1, WANG Zhan-Guo1
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083
2School of Information Engineering, Guangdong University of Technology, Guangzhou 510006
Cite this article:   
GUO Yu-Bing, CHEN Yong-Hai, XIANG Ying et al  2011 Chin. Phys. Lett. 28 096101
Download: PDF(578KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We observe obviously different diffraction efficiencies with forward and reverse dc voltages in a forced-light-scattering (FLS) experiment for a cell with ZnO nanorod doped in only one poly (vinyl alcohol) (PVA) layer. When a dc voltage with a positive pole on the ZnO nanorod doped side is applied, the excited charge carriers primarily move along the transverse direction, which results in a higher diffraction efficiency. Conversely, when the dc voltage with a negative pole on the ZnO nanorod doped side is applied, the excited charge carriers primarily move along the longitudinal direction, which leads to a lower diffraction efficiency. A largest diffraction efficiency of about 9% is achieved in the ZnO nanorod doped liquid crystal cell.
Keywords: 61.30.Hn      42.25.Fx     
Received: 18 March 2011      Published: 30 August 2011
PACS:  61.30.Hn (Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)  
  42.25.Fx (Diffraction and scattering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/096101       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/096101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Yu-Bing
CHEN Yong-Hai
XIANG Ying
QU Sheng-Chun
WANG Zhan-Guo
[1] Khoo I C 1995 Liquid Crystals (New York: Wiley interscience) p 45
[2] Khoo I C, Li H and Liang Y 1994 Opt. Lett. 19 1723
[3] Khoo I C 1996 IEEE J. Quantum Electron. 32 525
[4] Khoo I C 1995 Opt. Lett. 20 2137
[5] Xiang Y, Liu Y K, Li T, Yang S L and Jiang Z J 2008 J. Appl. Phys. 104 063107
[6] Li T, Xiang Y, Liu Y K, Wang J and Yang S L 2009 Chin. Phys. Lett. 26 086108
[7] Wu X L, Siu G G, Fu C L and Ong H C 2001 Appl. Phys. Lett. 78 2285
[8] Garces N Y, Wang L, Bai L, Giles N C, Halliburton L E and Cantwell G 2002 Appl. Phys. Lett. 81 622
[9] Abdullah M, Morimoto T and Okuyama K 2003 Adv. Func. Mater. 13 800
[10] Shan F K, Liu G X, Lee W J, Lee G H, Kim I S and Shin B C 2005 Appl. Phys. Lett. 86 221910
[11] Zhang J, Ostroverkhov V, Singer K D, Reshetnyak V and Reznikov Y 2000 Opt. Lett. 25 414
[12] Sun X D, Yao F G, Pei Y B and Zhang J L 2007 J. Appl. Phys. 102 013104
Related articles from Frontiers Journals
[1] CHENG Wen-Kai, GAO Bin, PU Hai-Hui, LIU Jian-Hua. Self Ordering of Nematic Liquid Crystal Molecules in HPDLC Bragg Gratings[J]. Chin. Phys. Lett., 2012, 29(6): 096101
[2] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 096101
[3] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 096101
[4] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 096101
[5] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 096101
[6] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 096101
[7] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 096101
[8] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 096101
[9] ZENG Ming-Ying, CUI Wei, TAN Xiao-Qin, WU Chen-Xu** . The Phase Transition of Nematic Liquid Crystal Cells Bounded by Surfactant-Laden Interfaces[J]. Chin. Phys. Lett., 2011, 28(6): 096101
[10] ZHANG Jin-Long, ** . Analysis of Optical Vortices in the Near Field of a Thin Metal Film[J]. Chin. Phys. Lett., 2011, 28(5): 096101
[11] LIU Hong-Wei**, KAN Qiang, WANG Chun-Xia, HU Hai-Yang, XU Xing-Sheng, CHEN Hong-Da . Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab[J]. Chin. Phys. Lett., 2011, 28(5): 096101
[12] GAO Yu-Feng, YANG Yang, SUN De-Yan** . Wetting of Liquid Iron in Carbon Nanotubes and on Graphene Sheets: A Molecular Dynamics Study[J]. Chin. Phys. Lett., 2011, 28(3): 096101
[13] XU Qi-Yuan**, LIU Zheng-Tang, LI Yang-Ping, WU Qian, ZHANG Shao-Feng . Antireflective Characteristics of Sub-Wavelength Periodic Structure with Square Hole[J]. Chin. Phys. Lett., 2011, 28(2): 096101
[14] SUN Ji-Yu, **, XIE Hong . Recurrence Formulas for the Mie Series[J]. Chin. Phys. Lett., 2011, 28(10): 096101
[15] ZHANG Zhi-Dong**, XUAN Li . Instability of a Biaxial Nematic Liquid Crystal Formed by Homeotropic Anchoring on Surface Grooves[J]. Chin. Phys. Lett., 2011, 28(10): 096101
Viewed
Full text


Abstract