Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 094701    DOI: 10.1088/0256-307X/28/9/094701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Landau–Stanyukovich Rule and the Similarity Parameter of Converging Shock Waves in Magnetogasdynamics
Mithilesh Singh1**, L. P. Singh2, Akmal Husain2
1Department of Mathematics, Dehradun Institute of Technology, Dehradun, India
2Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, India
Cite this article:   
Mithilesh Singh, L. P. Singh, Akmal Husain 2011 Chin. Phys. Lett. 28 094701
Download: PDF(551KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Second-kind self-similar solutions to a problem of converging cylindrical shock waves in magnetogasdynamics are investigated. Two trial functions suggested by Chisnell and the shooting method of Landau–Stanyukovich are used to determine the similarity exponent for different values of specific heat ratio γ and the parameter k, where kın (0, 1]. Detailed analyses of flow patterns for different values of adiabatic heat exponent and magnetic field strength are carried out. It is observed that the general behavior of the velocity and density profiles is not affected in a magnetogasdynamics regime whereas there is an increase in the absolute value of the flow parameters with an increase in the magnetic field strength. However, the pressure profiles are greatly affected by the magnetic field interaction.
Keywords: 47.60.-i      47.40.Ki     
Received: 08 December 2010      Published: 30 August 2011
PACS:  47.60.-i (Flow phenomena in quasi-one-dimensional systems)  
  47.40.Ki (Supersonic and hypersonic flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/094701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/094701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mithilesh Singh
L. P. Singh
Akmal Husain
[1] Chisnell R F 1998 J. Fluid Mech. 354 357
[2] Guderley G 1942 Luftfahrtforschung 19 302
[3] Butler D 1954 Armament Res. Estab. Rep. 54 54
[4] Sedov L I 1959 Similarity and Dimensional Methods in Mechanics (New York: Academic)
[5] Stanyukovich K P 1960 Unsteady Motion of Continuous Media (New York: Pergamon)
[6] Zeldovich Y B and Raizer Y P 1967 Physics of Shock Waves and High Temperature Hydrodynamic Phenomenon II (New York: Academic)
[7] Welsh R L 1967 J. Fluid Mech. 29 61
[8] Lazarus R B 1981 SIAM J. Numer. Anal. 18 316
[9] Hirschler T and Gretler W 2001 Z. Angew. Math. Phys. 52 151
[10] Taylor M G G T and Cargill P J 2001 J. Plasma Phys. 66 239
[11] Landau L D and Lifshitz E M 1976 Course of Theoretical Physics (New York: Pergamon)
[12] Gurovich V Ts et al 2007 Phys. Rev. Lett. 99 124503
[13] Gurovich V Ts and Fel L G 2009 J. Exp. Theor. Phys. 89 14
[14] Whitham G B 1974 Linear and Nonlinear Waves (New York: Interscience)
[15] Hafner P 1988 SIAM J. Appl. Math. 48 1244
[16] Radha Ch and Sharma V D 1993 Phys. Fluids B 5 4287
[17] Toque N 2001 Shock Wave 11 157
[18] Korobeinikov V P 1976 Problems in the Theory of Point Explosion in Gases ed Providence R I (New York: American Mathematical Society)
[19] Lock R M and Mestel A J 2008 J. Plasma Phys. 74 531
[20] Singh L P et al 2011 Astrophys. Space Sci. 331 597
[21] Singh L P et al 2011 Meccanica 46 437
[22] Singh L P, Singh M and Pandey B D 2010 AIAA 48 2523
Related articles from Frontiers Journals
[1] WANG Li, LU Xi-Yun** . The Effect of Mach Number on Turbulence Behaviors in Compressible Boundary Layers[J]. Chin. Phys. Lett., 2011, 28(6): 094701
[2] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 094701
[3] L. P. Singh, Akmal Husain, M. Singh. An Approximate Analytical Solution of Imploding Strong Shocks in a Non-Ideal Gas through Lie Group Analysis[J]. Chin. Phys. Lett., 2010, 27(1): 094701
[4] CAO Yu-Hui, PEI Jie, CHEN Jun, SHE Zhen-Su,. Compressibility Effects in Turbulent Boundary Layers[J]. Chin. Phys. Lett., 2008, 25(9): 094701
[5] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 094701
[6] XU Jing-Lei, MA Hui-Yang. Supersonic Turbulent Boundary Layer: DNS and RANS[J]. Chin. Phys. Lett., 2007, 24(3): 094701
Viewed
Full text


Abstract